Leading order nonadiabatic corrections to rovibrational levels of $\mathbf{H}_{2}, \mathbf{D}_{2}$, and \mathbf{T}_{2}

Krzysztof Pachucki ${ }^{1, a)}$ and Jacek Komasa ${ }^{2, b)}$
${ }^{1)}$ Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
${ }^{2)}$ Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań, Poland
(Dated: 8 July 2015)
An efficient computational approach to nonadiabatic effects in the hydrogen molecule $\left(H_{2}, D_{2}, T_{2}\right)$ is presented. The electronic wave function is expanded in the JamesCoolidge basis set, which enables obtaining a very high accuracy of nonadiabatic potentials. A single point convergence of the potentials with growing size of the basis set reveals a relative accuracy ranging from 10^{-8} to 10^{-13}. An estimated accuracy of the leading nonadiabatic correction to the rovibrational energy levels is of the order of $10^{-7} \mathrm{~cm}^{-1}$. After a significant increase in the accuracy of the Born-Oppenheimer and adiabatic calculations, the nonadiabatic results presented in this report constitute another step towards highly accurate theoretical description of the hydrogen molecule.

[^0]
I. INTRODUCTION

Molecular hydrogen is the simplest neutral molecule, and it has been a benchmark system for calculations and spectroscopy since the explanation of its stability by quantum mechanics ${ }^{1}$ in 1927. Determination of the dissociation energy of H_{2} has led to a fruitful interplay between theory and experiment, continued over several decades and resulting in ever increasing accuracies of both. ${ }^{2-24}$ The progress made by 2001 is the subject of a detailed review by Stoicheff. ${ }^{25}$

In recent years, the accuracy of experimental determination of the dissociation and ionization energies of H_{2} and its isotopomers has reached the level of $10 \mathrm{ppb} .^{26-30}$ Simultaneously, significant progress in theory ${ }^{31-35}$ has enabled ab initio calculations with precision rivaling or even surpassing that of the best measurements. To keep up with the increasing experimental accuracy, theory needs to take into account tiny nonadiabatic, relativistic and even quantum electrodynamic effects. The latter effects contribute about 5 ppm to the total dissociation energy and their rigorous treatment is crucial in state-of-the-art calculations. Excellent compliance between contemporary experimental and theoretical data on rovibrational levels of the ground electronic state of H_{2} has allowed the first observation of the QED effects in the rotational progressions of the H_{2} spectrum. ${ }^{35,36}$ To push the accuracy of the theoretical predictions to a level limited by uncertainties in the proton-to-electron mass ratio ${ }^{37}$ or in the proton-charge radius, ${ }^{38}$ it is necessary both to include higher order effects and to level up the accuracy of the already known contributions.

The theoretically determined energy of a rovibrational level contains several contributions: nonrelativistic, relativistic, radiative, and others. A convenient interpretation of these contributions is obtained by expanding the energy as a power series in α-the fine structure constant. ${ }^{39-41}$ The finite nuclear mass effects can be treated using the nonadiabatic perturbation theory (NAPT), ${ }^{31,32}$ which relies on the expansion of the energy in m_{e} / M-the electron-nucleus mass ratio. Such a double power expansion provides a firm framework for theoretical description of molecular systems.

In our multistage program of improving the overall accuracy of theoretical outcome, two steps have already been successfully accomplished. They concern the two largest terms of the energy expansion - the Born-Oppenheimer (BO) and the adiabatic contributions. Thanks to a new technique ${ }^{42}$ for the evaluation of molecular integrals in the James-Coolidge basis,
an improvement of several orders of magnitude in accuracy of these contributions has been possible. ${ }^{43,44}$ Here we report on the next step concerning the leading nonadiabatic correction evaluated using the improved approach and the James-Coolidge functions. The following section sets theoretical background for the perturbative treatment of the nonadiabatic effects, and subsequent sections go deeper into technical details of the project.

II. PERTURBATIVE FORMALISM

The formalism presented in the following sections is a modification of that introduced several years ago. ${ }^{31,32}$ A more efficient treatment of wave-function derivatives is shown, as well as explicit expressions for the higher order effective Hamiltonians in the NAPT approach are derived.

Let the total wave function ϕ be a solution of the stationary Schrödinger equation [$H-$ $E]|\phi\rangle=0$, with the Hamiltonian $H=H_{\mathrm{el}}+H_{\mathrm{n}}$, partitioned into the electronic and nuclear parts. The clamped nuclei electronic Hamiltonian (with fixed positions of nuclei)

$$
\begin{equation*}
H_{\mathrm{el}}=-\sum_{a} \frac{\nabla_{a}^{2}}{2 m_{\mathrm{e}}}+V \tag{1}
\end{equation*}
$$

consists of the electronic kinetic energy term and the potential V, which includes all the Coulomb interactions. The nuclear Hamiltonian of a homonuclear diatomic molecule, after the center of mass motion separation and with the space-fixed reference frame attached to the geometrical center of two nuclei, has the form

$$
\begin{equation*}
H_{\mathrm{n}}=-\frac{1}{2 \mu_{\mathrm{n}}}\left(\nabla_{R}^{2}+\nabla_{\mathrm{el}}^{2}\right), \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\vec{\nabla}_{\mathrm{el}} \equiv \frac{1}{2} \sum_{a} \vec{\nabla}_{a} \tag{3}
\end{equation*}
$$

R means the internuclear distance, and μ_{n} is the nuclear reduced mass.
Now, let the unperturbed (zeroth-order) wave function be taken as the adiabatic wave function

$$
\begin{equation*}
\phi_{\mathrm{a}}(\vec{r}, \vec{R})=\phi_{\mathrm{el}}(\vec{r}) \chi(\vec{R}) \tag{4}
\end{equation*}
$$

i.e. as a product of the nuclear wave function χ and the electronic wave function ϕ_{el} depending implicitly on the nuclear coordinates \vec{R}. The electronic wave function obeys the
electronic Schrödinger equation with the clamped nuclei Hamiltonian

$$
\begin{equation*}
\left[H_{\mathrm{el}}-\mathcal{E}_{\mathrm{el}}(\vec{R})\right]\left|\phi_{\mathrm{el}}\right\rangle=0 . \tag{5}
\end{equation*}
$$

The total wave function can be expressed as a sum of terms parallel to and orthogonal to ϕ_{el}

$$
\begin{equation*}
\phi=\phi_{\mathrm{el}} \chi+\delta \phi_{\mathrm{na}} . \tag{6}
\end{equation*}
$$

The latter condition means that

$$
\begin{equation*}
\left\langle\delta \phi_{\mathrm{na}} \mid \phi_{\mathrm{el}}\right\rangle_{\mathrm{el}}=0, \tag{7}
\end{equation*}
$$

where $\langle\ldots\rangle_{\text {el }}$ represents integration over electronic coordinates only. As a consequence, the Schrödinger equation with the Hamiltonian H and the energy E can be decomposed into parallel and orthogonal parts

$$
\begin{equation*}
\left[\left(H_{\mathrm{el}}-\mathcal{E}_{\mathrm{el}}\right)+\left(\mathcal{E}_{\mathrm{el}}+H_{\mathrm{n}}-E\right)\right]\left|\phi_{\mathrm{el}} \chi+\delta \phi_{\mathrm{na}}\right\rangle=0 \tag{8}
\end{equation*}
$$

and further transformed to

$$
\begin{equation*}
\left(\mathcal{E}_{\mathrm{el}}-H_{\mathrm{el}}\right)\left|\delta \phi_{\mathrm{na}}\right\rangle=\left(\mathcal{E}_{\mathrm{el}}+H_{\mathrm{n}}-E\right)\left|\phi_{\mathrm{el}} \chi+\delta \phi_{\mathrm{na}}\right\rangle . \tag{9}
\end{equation*}
$$

Since $\delta \phi_{\mathrm{na}}$ is orthogonal to ϕ_{el}, see Eq. (7), the formal recursive solution to the above equation can be written as

$$
\begin{equation*}
\left|\delta \phi_{\mathrm{na}}\right\rangle=\frac{1}{\left(\mathcal{E}_{\mathrm{el}}-H_{\mathrm{el}}\right)^{\prime}}\left[H_{\mathrm{n}}\left|\phi_{\mathrm{el}} \chi\right\rangle+\left(\mathcal{E}_{\mathrm{el}}+H_{\mathrm{n}}-E\right)\left|\delta \phi_{\mathrm{na}}\right\rangle\right], \tag{10}
\end{equation*}
$$

where the prime in the denominator denotes subtraction of the reference state ϕ_{el} from the Hamiltonian inversion. ${ }^{45}$ In the next step, Eq. (8) is left-multiplied by $\left\langle\phi_{\mathrm{el}}\right|$ to yield

$$
\begin{equation*}
\left\langle\phi_{\mathrm{el}}\right| \mathcal{E}_{\mathrm{el}}+H_{\mathrm{n}}-E\left|\phi_{\mathrm{el}} \chi+\delta \phi_{\mathrm{na}}\right\rangle_{\mathrm{el}}=0, \tag{11}
\end{equation*}
$$

which can be rewritten to the form

$$
\begin{equation*}
\left(\mathcal{E}_{\mathrm{el}}+\mathcal{E}_{\mathrm{a}}+H_{\mathrm{n}}-E\right)|\chi\rangle=-\left\langle\phi_{\mathrm{el}}\right| H_{\mathrm{n}}\left|\delta \phi_{\mathrm{na}}\right\rangle_{\mathrm{el}} \tag{12}
\end{equation*}
$$

with $\mathcal{E}_{\mathrm{a}} \equiv\left\langle\phi_{\mathrm{el}}\right| H_{\mathrm{n}}\left|\phi_{\mathrm{el}}\right\rangle_{\mathrm{el}}$. Recursive substitution of Eq. (10) into (12) forms a perturbative expansion for the effective nuclear Hamiltonian

$$
\begin{equation*}
\left(\mathcal{E}_{\mathrm{el}}+\mathcal{E}_{\mathrm{a}}+H_{\mathrm{n}}-E\right)|\chi\rangle=-\left(H_{\mathrm{n}}^{(2)}+H_{\mathrm{n}}^{(3)}+H_{\mathrm{n}}^{(4)}+\ldots\right)|\chi\rangle \tag{13}
\end{equation*}
$$

the leading terms of which have the following explicit form

$$
\begin{align*}
H_{\mathrm{n}}^{(2)}= & \left\langle\phi_{\mathrm{el}}\right| H_{\mathrm{n}} \frac{1}{\left(\mathcal{E}_{\mathrm{el}}-H_{\mathrm{el})}\right)^{\prime}} H_{\mathrm{n}}\left|\phi_{\mathrm{el}}\right\rangle_{\mathrm{el}}, \tag{14}\\
H_{\mathrm{n}}^{(3)}= & \left\langle\phi_{\mathrm{el}}\right| H_{\mathrm{n}} \frac{1}{\left(\mathcal{E}_{\mathrm{el}}-H_{\mathrm{el}}\right)^{\prime}}\left(H_{\mathrm{n}}+\mathcal{E}_{\mathrm{el}}-E\right) \\
& \times \frac{1}{\left(\mathcal{E}_{\mathrm{el}}-H_{\mathrm{el}}\right)^{\prime}} H_{\mathrm{n}}\left|\phi_{\mathrm{el}}\right\rangle_{\mathrm{el}}, \tag{15}
\end{align*}
$$

and

$$
\begin{align*}
H_{\mathrm{n}}^{(4)}= & \left\langle\phi_{\mathrm{el}}\right| H_{\mathrm{n}} \frac{1}{\left(\mathcal{E}_{\mathrm{el}}-H_{\mathrm{el}}\right)^{\prime}}\left(H_{\mathrm{n}}+\mathcal{E}_{\mathrm{el}}-E\right) \frac{1}{\left(\mathcal{E}_{\mathrm{el}}-H_{\mathrm{el}}\right)^{\prime}} \\
& \times\left(H_{\mathrm{n}}+\mathcal{E}_{\mathrm{el}}-E\right) \frac{1}{\left(\mathcal{E}_{\mathrm{el}}-H_{\mathrm{el}}\right)^{\prime}} H_{\mathrm{n}}\left|\phi_{\mathrm{el}}\right\rangle_{\mathrm{el}} . \tag{16}
\end{align*}
$$

Taking into account the actual form (2) of the nuclear Hamiltonian we can transform further the above formulas, e.g.

$$
\begin{align*}
H_{\mathrm{n}}^{(2)}= & \left\langle H_{\mathrm{n}} \phi_{\mathrm{el}}\right| \frac{1}{\left(\mathcal{E}_{\mathrm{el}}-H_{\mathrm{el}}\right)^{\prime}}\left|H_{\mathrm{n}} \phi_{\mathrm{el}}\right\rangle \mathrm{el} \tag{17}\\
& \left.+\frac{1}{\mu_{\mathrm{n}}} \vec{\nabla}_{R}\left\langle\vec{\nabla}_{R} \phi_{\mathrm{el}}\right| \frac{1}{\left(\mathcal{E}_{\mathrm{el}}-H_{\mathrm{el}}\right)^{\prime}}\left|H_{\mathrm{n}} \phi_{\mathrm{el}}\right\rangle\right\rangle_{\mathrm{el}} \\
& -\frac{1}{\mu_{\mathrm{n}}}\left\langle H_{\mathrm{n}} \phi_{\mathrm{el}}\right| \frac{1}{\left(\mathcal{E}_{\mathrm{el}}-H_{\mathrm{el}}\right)^{\prime}}\left|\vec{\nabla}_{R} \phi_{\mathrm{el}}\right\rangle_{\mathrm{el}} \vec{\nabla}_{R} \\
& -\frac{1}{\mu_{\mathrm{n}}^{2}} \vec{\nabla}_{R}\left\langle\vec{\nabla}_{R} \phi_{\mathrm{el}}\right| \frac{1}{\left(\mathcal{E}_{\mathrm{el}}-H_{\mathrm{el}}\right)^{\prime}}\left|\vec{\nabla}_{R} \phi_{\mathrm{el}}\right\rangle_{\mathrm{el}} \vec{\nabla}_{R} .
\end{align*}
$$

In order to make the following expressions more compact, we shall introduce two abbreviations

$$
\begin{align*}
& \left|\phi_{\mathrm{ell}}\right\rangle=\frac{1}{\left(\mathcal{E}_{\mathrm{el}}-H_{\mathrm{el}}\right)^{\prime}}\left|H_{\mathrm{n}} \phi_{\mathrm{el}}\right\rangle, \tag{18}\\
& \left|\vec{\phi}_{\mathrm{ell}}\right\rangle=\frac{1}{\left(\mathcal{E}_{\mathrm{el}}-H_{\mathrm{el}}\right)^{\prime}}\left|\vec{\nabla}_{R} \phi_{\mathrm{el}}\right\rangle, \tag{19}
\end{align*}
$$

and then

$$
\begin{equation*}
H_{\mathrm{n}}^{(3)}=\left(\left\langle\phi_{\mathrm{ell}}\right|+\frac{1}{\mu_{\mathrm{n}}} \vec{\nabla}_{R}\left\langle\vec{\phi}_{\mathrm{ell}}\right|\right)\left(H_{\mathrm{n}}+\mathcal{E}_{\mathrm{el}}-E\right)\left(\left|\phi_{\mathrm{ell}}\right\rangle-\frac{1}{\mu_{\mathrm{n}}}\left|\overrightarrow{\mathrm{e}}_{\mathrm{ell}}\right\rangle \vec{\nabla}_{R}\right) \tag{20}
\end{equation*}
$$

and
$H_{\mathrm{n}}^{(4)}=\left(\left\langle\phi_{\mathrm{ell}}\right|+\frac{1}{\mu_{\mathrm{n}}} \vec{\nabla}_{R}\left\langle\vec{\phi}_{\mathrm{ell}}\right|\right)\left(H_{\mathrm{n}}+\mathcal{E}_{\mathrm{el}}-E\right) \frac{1}{\left(\mathcal{E}_{\mathrm{el}}-H_{\mathrm{el}}\right)^{\prime}}\left(H_{\mathrm{n}}+\mathcal{E}_{\mathrm{el}}-E\right)\left(\left|\phi_{\mathrm{ell}}\right\rangle-\frac{1}{\mu_{\mathrm{n}}}\left|\vec{\phi}_{\mathrm{ell}}\right\rangle \vec{\nabla}(\overrightarrow{\mathrm{C}})\right.$, The Hamiltonian $H_{\mathrm{n}}^{(2)}$ contains only the terms proportional to $\left(m_{\mathrm{e}} / \mu_{\mathrm{n}}\right)^{2}$, but $H_{\mathrm{n}}^{(3)}$ may have the terms with the second and higher powers of the electron-to-nucleus mass ratio. We are interested in the leading nonadiabatic correction, which means in the terms proportional to $\left(m_{\mathrm{e}} / \mu_{\mathrm{n}}\right)^{2}$.

III. IMPLEMENTATION OF DERIVATIVES

Let ψ_{k} be the basis functions of electronic coordinates, then the electronic ground state wave function can be expressed as

$$
\begin{equation*}
\phi_{\mathrm{el}}\left(\vec{r}_{1}, \vec{r}_{2}\right)=\sum_{k=1}^{N} v_{k}(R) \psi_{k}\left(\vec{r}_{1}, \vec{r}_{2}\right), \tag{22}
\end{equation*}
$$

where \vec{v} is a vector consisting of real coefficients of this expansion. From now on we shall drop the 'el' subscript in the braket symbol as all the following integrations will be performed in the electronic domain. The matrix elements of the nuclear Hamiltonian (2) in the ψ_{i} basis are

$$
\begin{align*}
& \left\langle\psi_{i}\right| H_{\mathrm{n}}\left|\psi_{j}\right\rangle=-\frac{1}{2 \mu_{\mathrm{n}}} \vec{\nabla}_{R}\left\langle\psi_{i} \mid \psi_{j}\right\rangle \vec{\nabla}_{R} \\
& -\frac{1}{4 \mu_{\mathrm{n}}}\left\langle\psi_{i} \mid\left(\nabla_{R}^{2}+\nabla_{\mathrm{el}}^{2}\right) \psi_{j}\right\rangle-\frac{1}{4 \mu_{\mathrm{n}}}\left\langle\left(\nabla_{R}^{2}+\nabla_{\mathrm{el}}^{2}\right) \psi_{i} \mid \psi_{j}\right\rangle \tag{23}\\
& +\frac{1}{4 \mu_{\mathrm{n}}}\left\{\left\langle\vec{\nabla}_{R} \psi_{i} \mid \psi_{j}\right\rangle-\left\langle\psi_{i} \mid \vec{\nabla}_{R} \psi_{j}\right\rangle, \vec{\nabla}_{R}\right\},
\end{align*}
$$

where the braces are used to denote the anticommutator.
Let us introduce the following symbols for the new matrix elements

$$
\begin{align*}
\mathcal{H}_{k l} & =\left\langle\psi_{k} \mid H_{\mathrm{el}} \psi_{l}\right\rangle \\
\mathcal{N}_{k l} & =\left\langle\psi_{k} \mid \psi_{l}\right\rangle \\
\mathcal{A}_{k l} & =\left\langle\psi_{k} \mid \partial_{R} \psi_{l}\right\rangle \\
\mathcal{B}_{k l} & =\left\langle\vec{\nabla}_{R} \psi_{k} \mid \vec{\nabla}_{R} \psi_{l}\right\rangle+\left\langle\vec{\nabla}_{\mathrm{el}} \psi_{k} \mid \vec{\nabla}_{\mathrm{el}} \psi_{l}\right\rangle \\
\mathcal{C}_{k l} & =\left\langle\psi_{k}\right| \nabla_{\mathrm{el}}^{2}+\nabla_{R}^{2}\left|\psi_{l}\right\rangle \\
\mathcal{R}_{k l} & =\left\langle\psi_{k}\right| \frac{1}{\left(\mathcal{E}_{\mathrm{el}}-H_{\mathrm{el}}\right)^{\prime}}\left|\psi_{l}\right\rangle . \tag{24}
\end{align*}
$$

With this notation the electronic Schrödinger equation (5) reads

$$
\begin{equation*}
\left(\mathcal{H}-\mathcal{E}_{\mathrm{el}} \mathcal{N}\right) \vec{v}=0, \tag{25}
\end{equation*}
$$

the normalization condition

$$
\begin{equation*}
\vec{v}^{T} \mathcal{N} \vec{v}=1 \tag{26}
\end{equation*}
$$

and the reduced resolvent ${ }^{45}$

$$
\begin{equation*}
\mathcal{R}=\frac{1}{\left(\mathcal{E}_{\mathrm{el}} \mathcal{N}-\mathcal{H}\right)^{\prime}} \tag{27}
\end{equation*}
$$

Let us consider now the first order R-derivative of ϕ_{el}

$$
\begin{equation*}
\partial_{R} \phi_{\mathrm{el}}=\sum_{k}\left(\partial_{R} v_{k} \psi_{k}+v_{k} \partial_{R} \psi_{k}\right) . \tag{28}
\end{equation*}
$$

The term $\partial_{R} \psi_{k}$ is assumed to be known, as it is a derivative of the basis function. The $\partial_{R} v_{k}$ is obtained by differentiation of Eq. (25)

$$
\begin{equation*}
\left(\mathcal{H}-\mathcal{E}_{\mathrm{el}} \mathcal{N}\right) \partial_{R} \vec{v}+\left(\partial_{R} \mathcal{H}-\partial_{R} \mathcal{E}_{\mathrm{el}} \mathcal{N}-\mathcal{E}_{\mathrm{el}} \partial_{R} \mathcal{N}\right) \vec{v}=0 \tag{29}
\end{equation*}
$$

and of the normalization condition, Eq. (26),

$$
\begin{equation*}
2\left(\partial_{R} \vec{v}\right)^{T} \mathcal{N} \vec{v}+\vec{v}^{T} \partial_{R} \mathcal{N} \vec{v}=0 \tag{30}
\end{equation*}
$$

which combined together give

$$
\begin{equation*}
\partial_{R} \vec{v}=\mathcal{R}\left(\partial_{R} \mathcal{H}-\mathcal{E}_{\mathrm{el}} \partial_{R} \mathcal{N}\right) \vec{v}-\frac{1}{2}\left(\vec{v}^{T} \partial_{R} \mathcal{N} \vec{v}\right) \vec{v} . \tag{31}
\end{equation*}
$$

The first derivative of ϕ_{el} projected onto the basis function ψ_{k} gives

$$
\begin{equation*}
u_{k} \equiv\left\langle\psi_{k} \mid \partial_{R} \phi_{\mathrm{el}}\right\rangle=\sum_{l}\left(\mathcal{A}_{k l} v_{l}+\mathcal{N}_{k l} \partial_{R} v_{l}\right) \tag{32}
\end{equation*}
$$

Let us turn now to the second order R-derivative of ϕ_{el}

$$
\begin{align*}
\nabla_{R}^{2} \phi_{\mathrm{el}}= & \sum_{k}\left(\partial_{R}^{2} v_{k} \psi_{k}+\frac{2}{R} \partial_{R} v_{k} \psi_{k}+2 \partial_{R} v_{k} \partial_{R} \psi_{k}\right. \\
& \left.+v_{k} \nabla_{R}^{2} \psi_{k}\right) \tag{33}
\end{align*}
$$

Its projection onto the basis function ψ_{l} is

$$
\begin{align*}
& w_{l} \equiv\left\langle\psi_{l}\right| \nabla_{\mathrm{el}}^{2}+\nabla_{R}^{2}\left|\phi_{\mathrm{el}}\right\rangle \tag{34}\\
& =\sum_{k}\left(\mathcal{N}_{l k} \partial_{R}^{2} v_{k}+\frac{2}{R} \mathcal{N}_{l k} \partial_{R} v_{k}+2 \mathcal{A}_{l k} \partial_{R} v_{k}+\mathcal{C}_{l k} v_{k}\right) .
\end{align*}
$$

The second order derivative of \vec{v} is obtained by double differentiation of Eqs. (25) and (26)

$$
\begin{array}{r}
\partial_{R}^{2}\left[\left(\mathcal{H}-\mathcal{E}_{\mathrm{el}} \mathcal{N}\right) \vec{v}\right]=0 \\
\left(\mathcal{H}-\mathcal{E}_{\mathrm{el}} \mathcal{N}\right) \partial_{R}^{2} \vec{v}+2\left(\partial_{R} \mathcal{H}-\partial_{R} \mathcal{E}_{\mathrm{el}} \mathcal{N}-\mathcal{E}_{\mathrm{el}} \partial_{R} \mathcal{N}\right) \partial_{R} \vec{v} \\
+\left(\partial_{R}^{2} \mathcal{H}-\partial_{R}^{2} \mathcal{E}_{\mathrm{el}} \mathcal{N}-\mathcal{E}_{\mathrm{el}} \partial_{R}^{2} \mathcal{N}-2 \partial_{R} \mathcal{E}_{\mathrm{el}} \partial_{R} \mathcal{N}\right) \vec{v}=0 \tag{35}
\end{array}
$$

$$
\begin{align*}
& 2 \partial_{R}^{2} \vec{v}^{T} \mathcal{N} \vec{v}+2 \partial_{R} \vec{v}^{T} \mathcal{N} \partial_{R} \vec{v} \\
& +4 \partial_{R} \vec{v}^{T} \partial_{R} \mathcal{N} \vec{v}+\vec{v}^{T} \partial_{R}^{2} \mathcal{N} \vec{v}=0 \tag{36}
\end{align*}
$$

which leads to

$$
\begin{align*}
\partial_{R}^{2} \vec{v}= & \mathcal{R}\left[2\left(\partial_{R} \mathcal{H}-\partial_{R} \mathcal{E}_{\text {el }} \mathcal{N}-\mathcal{E}_{\text {el }} \partial_{R} \mathcal{N}\right) \partial_{R} \vec{v}\right. \tag{37}\\
& \left.+\left(\partial_{R}^{2} \mathcal{H}-\mathcal{E}_{\text {el }} \partial_{R}^{2} \mathcal{N}-2 \partial_{R} \mathcal{E}_{\text {el }} \partial_{R} \mathcal{N}\right) \vec{v}\right] \\
& -\left(\partial_{R} \vec{v}^{T} \mathcal{N} \partial_{R} \vec{v}+2 \partial_{R} \vec{v}^{T} \partial_{R} \mathcal{N} \vec{v}+\frac{1}{2} \vec{v}^{T} \partial_{R}^{2} \mathcal{N} \vec{v}\right) \vec{v},
\end{align*}
$$

where the first order derivative of $\mathcal{E}_{\text {el }}$ is

$$
\begin{equation*}
\partial_{R} \mathcal{E}_{\mathrm{el}}=\vec{v}^{T}\left(\partial_{R} \mathcal{H}-\mathcal{E}_{\mathrm{el}} \partial_{R} \mathcal{N}\right) \vec{v} . \tag{38}
\end{equation*}
$$

The matrices and vectors derived in this Section set the grounds for the expressions of the nonadiabatic potentials comprising the effective Hamiltonians presented in the next Section.

IV. CONSTRUCTION OF THE EFFECTIVE NUCLEAR HAMILTONIANS AND THE RADIAL SCHRÖDINGER EQUATION

The adiabatic correction \mathcal{E}_{a}, appearing in Eq (12), has been derived in Ref. 44 using the notation introduced in the previous section

$$
\begin{equation*}
\mathcal{E}_{\mathrm{a}}=\frac{1}{2 \mu_{\mathrm{n}}}\left(\vec{v}^{T} \mathcal{B} \vec{v}+\partial_{R} \vec{v}^{T} \mathcal{N} \partial_{R} \vec{v}+2 \partial_{R} \vec{v}^{T} \mathcal{A} \vec{v}\right) . \tag{39}
\end{equation*}
$$

In the following sections we shall present expressions for the second- and third-order effective nuclear Hamiltonians, appearing in Eq. (13), using quantities introduced in the preceding sections.

A. Second-order Hamiltonian

The second-order nonadiabatic effective Hamiltonian of Eq. (17) is transformed to the form ${ }^{31,32}$

$$
\begin{align*}
H_{\mathrm{n}}^{(2)}= & \mathcal{U}(R)+\left(\frac{2}{R}+\frac{\partial}{\partial R}\right) \mathcal{V}(R) \tag{40}\\
& -\frac{1}{R^{2}} \frac{\partial}{\partial R} R^{2} \mathcal{W}_{\|}(R) \frac{\partial}{\partial R}+\frac{J(J+1)}{R^{2}} \mathcal{W}_{\perp}(R)
\end{align*}
$$

where

$$
\begin{align*}
\mathcal{U}(R) & =\left\langle H_{\mathrm{n}} \phi_{\mathrm{el}}\right| \frac{1}{\left(\mathcal{E}_{\mathrm{el}}-H_{\mathrm{el}}\right)^{\prime}}\left|H_{\mathrm{n}} \phi_{\mathrm{el}}\right\rangle \\
& =\frac{1}{4 \mu_{\mathrm{n}}^{2}} w^{T} \mathcal{R} w, \tag{41}\\
\mathcal{V}(R) & =\frac{1}{\mu_{\mathrm{n}}}\left\langle\partial_{R} \phi_{\mathrm{el}}\right| \frac{1}{\left(\mathcal{E}_{\mathrm{el}}-H_{\mathrm{el}}\right)^{\prime}}\left|H_{\mathrm{n}} \phi_{\mathrm{el}}\right\rangle \\
& =-\frac{1}{2 \mu_{\mathrm{n}}^{2}} u^{T} \mathcal{R} w, \tag{42}\\
\mathcal{W}_{\| \mid}(R) & =\frac{1}{\mu_{\mathrm{n}}^{2}}\left\langle\partial_{R} \phi_{\mathrm{el}}\right| \frac{1}{\left(\mathcal{E}_{\mathrm{el}}-H_{\mathrm{el}}\right)^{\prime}}\left|\partial_{R} \phi_{\mathrm{el}}\right\rangle \\
& =\frac{1}{\mu_{\mathrm{n}}^{2}} u^{T} \mathcal{R} u, \tag{43}\\
\mathcal{W}_{\perp}(R) & =\frac{1}{\mu_{\mathrm{n}}^{2}} \frac{\left(\delta^{i j}-n^{i} n^{j}\right)}{2}\left\langle\nabla_{R}^{i} \phi_{\mathrm{el}}\right| \frac{1}{\left(\mathcal{E}_{\mathrm{el}}-H_{\mathrm{el}}\right)^{\prime}}\left|\nabla_{R}^{j} \phi_{\mathrm{el}}\right\rangle \\
& =\frac{1}{2 \mu_{\mathrm{n}}^{2} R^{2}}\left\langle\phi_{\mathrm{el}}\right| \vec{L}_{\mathrm{el}} \frac{1}{\left(\mathcal{E}_{\mathrm{el}}-H_{\mathrm{el}}\right)^{\prime}} \vec{L}_{\mathrm{el}}\left|\phi_{\mathrm{el}}\right\rangle \tag{44}
\end{align*}
$$

In the last equation, it is assumed that the molecule has a null total angular momentum (Σ state), which implies $\vec{L}_{n}=-\vec{L}_{\text {el }}$ with $\vec{L}_{n}=-i R \times \vec{\nabla}_{R}$ and $\vec{L}_{\mathrm{el}}=-i \sum_{a} \vec{r}_{a} \times \vec{\nabla}_{a}$.

B. Third-order Hamiltonian

The third-order Hamiltonian (20) can be expressed as a sum of three distinct terms

$$
\begin{equation*}
H_{\mathrm{n}}^{(3)}=A+B+C, \tag{45}
\end{equation*}
$$

where

$$
\begin{align*}
A= & \left\langle\phi_{\mathrm{ell}}\right|\left(H_{\mathrm{n}}+\mathcal{E}_{\mathrm{el}}-E\right)\left|\phi_{\mathrm{ell}}\right\rangle, \\
B= & \frac{1}{\mu_{\mathrm{n}}} \vec{\nabla}_{R}\left\langle\vec{\phi}_{\mathrm{ell}}\right|\left(H_{\mathrm{n}}+\mathcal{E}_{\mathrm{el}}-E\right)\left|\phi_{\mathrm{ell}}\right\rangle \\
& -\frac{1}{\mu_{\mathrm{n}}}\left\langle\phi_{\mathrm{ell}}\right|\left(H_{\mathrm{n}}+\mathcal{E}_{\mathrm{el}}-E\right)\left|\vec{\phi}_{\mathrm{ell}}\right\rangle \vec{\nabla}_{R} \\
C= & -\frac{1}{\mu_{\mathrm{n}}^{2}} \vec{\nabla}_{R}\left\langle\vec{\phi}_{\mathrm{ell}}\right|\left(H_{\mathrm{n}}+\mathcal{E}_{\mathrm{el}}-E\right)\left|\overrightarrow{\mathrm{e}}_{\mathrm{ell}}\right\rangle \vec{\nabla}_{R} . \tag{46}
\end{align*}
$$

All these three expressions are transformed by commuting the term $H_{\mathrm{n}}+\mathcal{E}_{\text {el }}-E$ to the right and left

$$
\begin{align*}
A= & \frac{1}{2 \mu_{\mathrm{n}}}\left\langle\nabla_{R} \phi_{\mathrm{ell}} \mid \nabla_{R} \phi_{\mathrm{ell}}\right\rangle+\frac{1}{2}\left(H_{\mathrm{n}}+\mathcal{E}_{\mathrm{el}}-E\right)\left\langle\phi_{\mathrm{ell}} \mid \phi_{\mathrm{ell}}\right\rangle \\
& +\frac{1}{2}\left\langle\phi_{\mathrm{ell}} \mid \phi_{\mathrm{ell}}\right\rangle\left(H_{\mathrm{n}}+\mathcal{E}_{\mathrm{el}}-E\right) . \tag{47}
\end{align*}
$$

Since χ satisfies Eq. (13), A can be approximated, neglecting the terms of the order higher than fourth in $m_{\mathrm{e}} / \mu_{\mathrm{n}}$, by

$$
\begin{equation*}
A=\frac{1}{2 \mu_{\mathrm{n}}}\left\langle\nabla_{R} \phi_{\mathrm{ell}} \mid \nabla_{R} \phi_{\mathrm{ell}}\right\rangle-\mathcal{E}_{\mathrm{a}}\left\langle\phi_{\mathrm{ell}} \mid \phi_{\mathrm{ell}}\right\rangle . \tag{48}
\end{equation*}
$$

Similarly the term B is transformed to

$$
\begin{align*}
B= & \frac{1}{\mu_{\mathrm{n}}}\left[\vec{\nabla}_{R},\left\langle\vec{\phi}_{\mathrm{ell}} \mid H_{\mathrm{n}} \phi_{\mathrm{ell}}\right\rangle-\mathcal{E}_{\mathrm{a}}\left\langle\vec{\phi}_{\mathrm{ell}} \mid \phi_{\mathrm{ell}}\right\rangle\right] \\
& -\frac{2}{\mu_{\mathrm{n}}^{2}} \vec{\nabla}_{R} \cdot\left\langle\vec{\phi}_{\mathrm{ell}} \mid \vec{\nabla}_{R} \phi_{\mathrm{ell}}\right\rangle \cdot \vec{\nabla}_{R} \tag{49}
\end{align*}
$$

and the term C becomes

$$
\begin{align*}
C= & -\frac{1}{2 \mu_{\mathrm{n}}^{3}} \nabla_{R}^{i}\left[\left\langle\nabla_{R}^{k} \phi_{\mathrm{ell}}^{i} \mid \nabla_{R}^{k} \phi_{\mathrm{ell}}^{j}\right\rangle-\mathcal{E}_{\mathrm{a}}\right] \nabla_{R}^{j} \\
& +\frac{1}{2 \mu_{\mathrm{n}}^{2}}\left[\nabla_{R}^{i},\left\langle\phi_{\mathrm{ell}}^{i} \mid \phi_{\mathrm{ell}}^{j}\right\rangle \nabla_{R}^{j}\left(\mathcal{E}_{\mathrm{el}}+\mathcal{E}_{\mathrm{a}}\right)\right] . \tag{50}
\end{align*}
$$

All the components of $H_{\mathrm{n}}^{(3)}$ are $\mathcal{O}\left(\mu_{\mathrm{n}}^{-3}\right)$ except the last one in C, which is proportional to μ_{n}^{-2}. In the present calculations, only this term was accounted for. Its explicit form reads

$$
\begin{align*}
\delta \mathcal{V}(R) & =-\frac{1}{2 \mu_{\mathrm{n}}^{2}} \partial_{R} \mathcal{E}_{\mathrm{el}}\left\langle\partial_{R} \phi_{\mathrm{el}}\right|\left[\frac{1}{\left(\mathcal{E}_{\mathrm{el}}-H_{\mathrm{el}}\right)^{\prime}}\right]^{2}\left|\partial_{R} \phi_{\mathrm{el}}\right\rangle \\
& =-\frac{1}{2 \mu_{\mathrm{n}}^{2}} \partial_{R} \mathcal{E}_{\mathrm{el}} u^{T} \mathcal{R}^{T} \mathcal{N} \mathcal{R} u \tag{51}
\end{align*}
$$

and it was added to $\mathcal{V}(R)$ in $\mathrm{Eq}(40)$. The omitted components of $H_{\mathrm{n}}^{(3)}$ and of the higher order Hamiltonians remain the main source of the uncertainty of the nonrelativistic results.

C. Radial Schrödinger equation

Now, our goal is to solve Eq. (13) to the second order in the $m_{\mathrm{e}} / \mu_{\mathrm{n}}$, which means that the right hand side series of Hamiltonians is limited to the terms proportional to $\left(m_{\mathrm{e}} / \mu_{\mathrm{n}}\right)^{2}$. The explicit form of the radial Schrödinger equation reads (see Ref. 32 for detailed derivation)

$$
\begin{align*}
& {\left[-\frac{1}{R^{2}} \frac{\partial}{\partial R} \frac{R^{2}}{2 \mu_{\|}(R)} \frac{\partial}{\partial R}+\frac{J(J+1)}{2 \mu_{\perp}(R) R^{2}}+\mathcal{Y}(R)\right] \chi_{J}(R)} \\
& =E \chi_{J}(R) \tag{52}
\end{align*}
$$

where the functions

$$
\begin{equation*}
\frac{1}{2 \mu_{\|}(R)} \equiv \frac{1}{2 \mu_{\mathrm{n}}}+\mathcal{W}_{\|}(R) \tag{53}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{2 \mu_{\perp}(R)} \equiv \frac{1}{2 \mu_{\mathrm{n}}}+\mathcal{W}_{\perp}(R) . \tag{54}
\end{equation*}
$$

are interpreted as R-dependent vibrational and rotational masses, and where the potential $\mathcal{Y}(R)$ for the movement of the nuclei consists of the BO curve $\mathcal{E}_{\mathrm{el}}(R)$, the adiabatic correction curve $\mathcal{E}_{\mathrm{a}}(R)$, and the nonadiabatic correction curve $\delta \mathcal{E}_{\text {na }}(R)$

$$
\begin{equation*}
\mathcal{Y}(R)=\mathcal{E}_{\mathrm{el}}(R)+\mathcal{E}_{\mathrm{a}}(R)+\delta \mathcal{E}_{\mathrm{na}}(R) . \tag{55}
\end{equation*}
$$

The latter correction is expressed in terms of the functions defined in previous sections as

$$
\begin{equation*}
\delta \mathcal{E}_{\mathrm{na}}(R)=\mathcal{U}(R)+\left(\frac{2}{R}+\frac{\partial}{\partial R}\right)[\mathcal{V}(R)+\delta \mathcal{V}(R)] . \tag{56}
\end{equation*}
$$

As we are interested in dissociation energy D_{0} of rovibrational levels we fix the origin of the energy scale to the separated atoms limit, and correspondingly, we convert all the potentials to the following form

$$
\begin{align*}
\mathcal{Y}^{\text {int }}(R) & =\mathcal{Y}(R)-\mathcal{Y}(\infty) \tag{57}\\
\mathcal{W}^{\text {int }}(R) & =\mathcal{W}(R)-\mathcal{W}(\infty) \tag{58}
\end{align*}
$$

In the separated atoms limit, \mathcal{V} and $\delta \mathcal{V}$ vanish, whereas $\mu_{\mathrm{n}}^{2} \mathcal{W}$ and $\mu_{\mathrm{n}}^{2} \mathcal{U}$ are equal to $-\frac{1}{4}$ a.u. In this convention, the eigenvalue E of the Hamiltonian in Eq. (52) corresponds to the negative of D_{0}.

For convenience, the radial equation (52) was further transformed, using $\eta_{J}(R)=$ $R \chi_{J}(R)$, to the following working form

$$
\begin{align*}
& \frac{\partial}{\partial R} \frac{1}{\mu_{\|}(R)} \frac{\partial}{\partial R} \eta_{J}(R) \tag{59}\\
& =-2\left[E-\frac{\mathcal{Z}(R)}{R}-\frac{J(J+1)}{2 \mu_{\perp}(R) R^{2}}\right] \eta_{J}(R)
\end{align*}
$$

with

$$
\begin{equation*}
\mathcal{Z}(R)=R \mathcal{Y}^{\text {int }}(R)+\frac{\partial}{\partial R} \mathcal{W}_{\|}^{\text {int }}(R) \tag{60}
\end{equation*}
$$

Eq. (59) was solved numerically using the procedure described in Ref. 46 modified by us to account for the variable masses. A significant advantage of the above approach is the possibility of obtaining all the nonadiabatic levels from a single set of the potentials.

V. NUMERICAL RESULTS

Our goal is to obtain as high numerical accuracy of the nonadiabatic corrections as possible. For this reason, we implemented the working formulas of Sec. III and IV in FORTRAN 90 using the 212 -bit (~ 64 digits) precision with a support from the quad-double arithmetic QD library. ${ }^{47}$

A. Basis set and matrix elements

To evaluate all the required matrix elements (24) we have employed the James-Coolidge $(\mathrm{JC})^{4}$ basis functions. In recent studies on the ground state BO potential energy of $\mathrm{H}_{2}{ }^{43}$ and on the adiabatic correction ${ }^{44}$, the JC basis has been found very effective in analytic evaluation of all the needed integrals, and has proven to yield highly accurate results. The symmetric JC basis function is of the form

$$
\begin{align*}
& \psi=\left(1+P_{12}\right)(1+\hat{\imath}) \\
& \quad\left(r_{1 A}-r_{1 B}\right)^{n_{2}}\left(r_{2 A}-r_{2 B}\right)^{n_{3}}\left(r_{1 A}+r_{1 B}\right)^{n_{4}}\left(r_{2 A}+r_{2 B}\right)^{n_{5}} \\
& e^{-\beta\left(r_{1 A}+r_{1 B}+r_{2 A}+r_{2 B}\right)} r_{12}^{n_{1}} R^{-n_{1}-n_{2}-n_{3}-n_{4}-n_{5}-3} . \tag{61}
\end{align*}
$$

The basis function depends parametrically on the internuclear distance R in two ways: through the explicit power of the internuclear distance R, introduced to ensure that the overlap integrals are dimensionless, and implicitly through the electron-nucleus distances $r_{1 A}, r_{1 B}, r_{2 A}, r_{2 B}$. The numerical value of the nonlinear parameter β was optimized with respect to the electronic energy $\mathcal{E}_{\text {el }}(R)$ for each R separately. Proper spin and inversion symmetry (singlet gerade for the ground electronic state) of the wave function was imposed using two projectors containing the electron exchange P_{12} and the electron-coordinate inversion $\hat{\imath}$ operators. In the JC basis, the matrix elements (24) are expressible by combinations of the closed-form functions f derived in Ref. 42

$$
\begin{align*}
& f\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5} ; R, \beta\right)=R^{-n_{1}-n_{2}-n_{3}-n_{4}-n_{5}-1} \tag{62}\\
& \int \frac{d^{3} r_{1}}{4 \pi} \int \frac{d^{3} r_{2}}{4 \pi} \frac{e^{-\beta r_{1 A}}}{r_{1 A}} \frac{e^{-\beta r_{1 B}}}{r_{1 B}} \frac{e^{-\beta r_{2 A}}}{r_{2 A}} \frac{e^{-\beta r_{2 B}}}{r_{2 B}} \frac{1}{r_{12}^{1-n_{1}}} \\
& \left(r_{1 A}-r_{1 B}\right)^{n_{2}}\left(r_{2 A}-r_{2 B}\right)^{n_{3}}\left(r_{1 A}+r_{1 B}\right)^{n_{4}}\left(r_{2 A}+r_{2 B}\right)^{n_{5}},
\end{align*}
$$

therefore, their evaluation requires no numerical integration to be involved.

For ψ_{k}, the k-th element of the basis set, the subscript k can be treated as a multiindex composed of integer exponents $\left\{n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right\}$. To simplify the description of the arrangement of the basis set we introduce here an integer parameter Ω related to the exponents n_{i} by

$$
\begin{equation*}
\sum_{i} n_{i} \leq \Omega \tag{63}
\end{equation*}
$$

The parameter Ω is pivotal in the basis set convergence study discussed below. For the evaluation of $\mathcal{W}_{\|}$potential, we split the expansion (22) into two sectors, one limited by Ω and the other by $\Omega-2$, each with his own nonlinear parameter β and $\left\{n_{i}\right\}$.

B. Convergence of the nonadiabatic potentials

There are five nonadiabatic potentials involved in the radial Schrödinger equation (52): $\mathcal{U}(R), \mathcal{V}(R), \delta \mathcal{V}(R), \mathcal{W}_{\|}(R)$, and $\mathcal{W}_{\perp}(R)$. At first, we shall analyze the accuracy of a singlepoint evaluation of all these potentials. An estimate of the accuracy can be obtained by watching the convergence of given potential with increasing size of the basis set. Table I contains a selection of representative data illustrating the convergence of the nonadiabatic potentials with increasing size of the basis set governed by the shell parameter Ω of Ineq. (63). A general conclusion which can be drawn from these data is that the relative accuracy obtained from the largest expansions is better than 10^{-9} for the whole range of internuclear distances R. Exceptions appear only in the vicinity of those R at which a potential changes its sign. In such a region, the accuracy is lower than that mentioned above but simultaneously the absolute value of the potential itself is close to zero. Both, the reduced resolvent and the matrix elements of the four potentials of Table I were evaluated with the same basis functions used to represent the electronic wave function ϕ_{el}, i.e. the functions of ${ }^{1} \Sigma_{g}^{+}$symmetry. In contrast, the \mathcal{W}_{\perp} potential requires a basis function of Π_{g} symmetry to represent the resolvent, because of the presence of the \vec{L}_{el} operator raising the angular momentum. In this case we have employed the JC function (61) multiplied by $x_{1}+i y_{1}$. For this reason the convergence of the \mathcal{W}_{\perp} potential depends on two separate expansions. Examples of the convergence are presented in Table II, where the left panel shows the convergence with increasing expansion size of the unperturbed ${ }^{1} \Sigma_{g}^{+}$wave function and the fixed size of the first order correction function, whereas the right panel with the opposite combination of functions. The convergence with the size of the Π_{g} basis set is apparently slower and determines
the final relative accuracy reached for the $\mathcal{W}_{\perp}(R)$ but again the accuracy is definitely better than 10^{-9} for all R 's.

TABLE I. A sample of the convergence of the mass-independent nonadiabatic functions (in a.u.) with growing size of JC basis at selected internuclear distances R. Ω is the shell parameter of Eq. (63) and N is the number of basis functions.

Ω	N	$\mu_{\mathrm{n}}^{2} \mathcal{U}(0.8)$	$\mu_{\mathrm{n}}^{2} \mathcal{U}(1.4)$	$\mu_{\mathrm{n}}^{2} \mathcal{U}(6.0)$	$\mu_{\mathrm{n}}^{2} \mathcal{U}(12.0)$				
16	5301	-0.698940 5690	-0.31000326343	-0.25786706759806	-0.250 01022552499				
17	6831	-0.698940 6008	-0.310003 27313	-0.25786706760295	-0.250 01022553025				
18	8701	-0.698940 6080	-0.31000327526	-0.25786706760387	-0.250 01022552988				
19	10956	-0.6989406096	-0.31000327574	-0.25786706760415	-0.250 01022552975				
estim. relative accuracy		$3 \cdot 10^{-9}$	$2 \cdot 10^{-9}$	$2 \cdot 10^{-12}$	$3 \cdot 10^{-13}$				
Ω	N	$\mu_{\mathrm{n}}^{2} \mathcal{V}(0.8)$	$\mu_{\mathrm{n}}^{2} \mathcal{V}(1.4)$	$\mu_{\mathrm{n}}^{2} \mathcal{V}(6.0)$	$\mu_{\mathrm{n}}^{2} \mathcal{V}(12.0)$				
16	5301	+0.325 24421296	+0.18599580215	-0.012637379 028	-0.000 01149469730				
17	6831	+0.325 24422698	+0.18599580873	-0.012 637379017	-0.000 01149471174				
18	8701	+0.325 24422993	+0.185995810 10	-0.012 637379017	-0.000 01149471330				
19	10956	+0.325 24423062	+0.185995810 41	-0.012 637379017	-0.000 01149471359				
estim. relative accuracy		$3 \cdot 10^{-9}$	$2 \cdot 10^{-9}$	$4 \cdot 10^{-11}$	$3 \cdot 10^{-8}$				
Ω	N	$\mu_{\mathrm{n}}^{2} \delta \mathcal{V}(0.8)$	$\mu_{\mathrm{n}}^{2} \delta \mathcal{V}(1.4)$	$\mu_{\mathrm{n}}^{2} \delta \mathcal{V}(6.0)$	$\mu_{\mathrm{n}}^{2} \delta \mathcal{V}(12.0)$				
16	5301	-0.078 95964530	-0.000 049612744	+0.000 355367878713	+0.000 0003407447774				
17	6831	-0.078 95965900	-0.000 049612742	+0.000 355367879519	+0.000 0003407447436				
18	8701	-0.078 95966188	-0.000 049612742	+0.000 355367879635	+0.000 0003407447420				
19	10956	-0.078 95966256	-0.000 049612743	+0.000 355367879662	+0.000 0003407447419				
estim. relative accuracy		$9 \cdot 10^{-9}$	$2 \cdot 10^{-8}$	$9 \cdot 10^{-11}$	$3 \cdot 10^{-10}$				
$\Omega / \Omega-2$	N	$\mu_{\mathrm{n}}^{2} \mathcal{W}_{\\| \mid}(0.8)$	$\mu_{\mathrm{n}}^{2} \mathcal{W}_{\\| \mid}(1.4)$	$\mu_{\mathrm{n}}^{2} \mathcal{W}_{\\| \mid}(6.0)$	$\mu_{\mathrm{n}}^{2} \mathcal{W}_{\\| \mid}(12.0)$				
15/13	6324	-0.18194417090116	-0.1921434010194	-0.268 7585646431	-0.250 010683358996				
16/14	8361	-0.181944170 89896	-0.1921434010194	-0.268 7585646497	-0.250 010683362978				
17/15	10887	-0.18194417089864	-0.192 1434010194	-0.268 7585646519	-0.250 010683362914				
18/16	14002	-0.18194417089831	-0.192143 4010194	-0.268 7585646527	-0.250 010683362904				
estim. relative accuracy		$2 \cdot 10^{-12}$	$3 \cdot 10^{-13}$	$3 \cdot 10^{-12}$	$4 \cdot 10^{-14}$				

C. Analytic fits of the nonadiabatic potentials

In the next stage, the numerical values of the nonadiabatic potentials were used to determine the least-square fits of the following functional forms

$$
\begin{equation*}
e^{-a R} \sum_{i=0}^{i_{\max }} P_{i} R^{i}+e^{-b R-c R^{2}} \sum_{j=1}^{j_{\max }} Q_{j} R^{j} \tag{64}
\end{equation*}
$$

TABLE II. Typical examples of convergence of the mass-independent $\mu_{\mathrm{n}}^{2} \mathcal{W}_{\perp}(R)$ potential (in a.u.) with growing basis set size of both the unperturbed and perturbed wave function at selected internuclear distances R. Ω_{0} and Ω_{1} are the shell parameters of Eq. (63), whereas N_{0} and N_{1} symbolize the corresponding number of basis functions. The subscripts ' 0 ' or ' 1 ' correspond to the unperturbed and the first order correction function, respectively.

$\Omega_{1}=15$ and $N_{1}=11832$				$\Omega_{0}=19$ and $N_{0}=17787$			
Ω_{0}	N_{0}	$\mu_{\mathrm{n}}^{2} \mathcal{W}_{\perp}(1.4)$	$\mu_{\mathrm{n}}^{2} \mathcal{W}_{\perp}(12.0)$	Ω_{1}	N_{1}	$\mu_{\mathrm{n}}^{2} \mathcal{W}_{\perp}(1.4)$	$\mu_{\mathrm{n}}^{2} \mathcal{W}_{\perp}(12.0)$
16	8361	-0.027 2020298055120	-0.24999874799601	12	4480	-0.027202029 805127	-0.249 99873719
17	10887	-0.027 2020298055135	-0.249 99874799780	13	6328	-0.027 202029805466	-0.249 99874725
18	14002	-0.027 2020298055140	-0.24999874799786	14	8736	-0.027 202029805507	-0.249 99874795
19	17787	-0.027202 0298055141	-0.249 99874799792	15	11832	-0.027202 029805514	-0.249 99874800
estim. relative accuracy						$6 \cdot 10^{-13}$	$2 \cdot 10^{-10}$

for short and medium distances $R<R_{c}$, and

$$
\begin{equation*}
\sum_{k=k_{\min }}^{k_{\max }} A_{k} R^{-k} \quad \text { for } R>R_{c} \tag{65}
\end{equation*}
$$

The nonlinear parameters a, b, and c, the linear parameters P_{i}, Q_{j}, and A_{k}, as well as the sum limits and the threshold R_{c} were selected individually for each nonadiabatic potential. The optimum values of the parameters of potential (64) were determined by the fits to 88 points covering the range $0.1 \leq R /$ bohr ≤ 12.0. Table III contains a selection of numerical values of the five potentials in their mass-independent form, whereas the full list of 88 points is deposited in the Supplemental Material. ${ }^{48}$ The parameters pertinent to the long-range formula (65) were fitted to the points from the range $8 \leq R / \mathrm{bohr} \leq 12$. The discrete values of the potentials were shifted beforehand by pertinent atomic values, so that the interaction potentials vanishing in the $R \rightarrow \infty$ limit were obtained (see Eqs (57) and (58)).

The two parts of the potentials were joined together at the internuclear distance R_{c}, at which we imposed a requirement that both parts as well as their first and second derivatives were the same. The A_{k} parameters of the long-distance potential were fitted with these constraints, whereas the parameters present in formula (64) were determined freely. We do not present tables with the best fit parameters, instead we supply in the Supplemental Material ${ }^{48}$ several Fortran'90 code routines which evaluate the potentials at an arbitrary internuclear distance.

The fitting procedure is another source of error in the final results and our priority

TABLE III. An excerpt of the full-length table of the nonadiabatic potentials. The numerical values of the potentials correspond to the mass-independent form. All figures displayed are supposed to be exact. Full-length table is available in the Supplemental Material. ${ }^{48}$

R / bohr	$\mu_{\mathrm{n}}^{2} \mathcal{W}_{\\|}(R)$	$\mu_{\mathrm{n}}^{2} \mathcal{W}_{\perp}(R)$	$\mu_{\mathrm{n}}^{2} \mathcal{U}(R)$	$\mu_{\mathrm{n}}^{2} \mathcal{V}(R)$	$\mu_{\mathrm{n}}^{2} \delta \mathcal{V}(R)$
0.4	-0.14355086020	-0.002957170260	-2.0000795	+0.51976356	$-3.6837420 \cdot 10^{-1}$
0.8	-0.1819441708983	-0.0101378211172	-0.69894061	+0.325244231	$-7.8959663 \cdot 10^{-2}$
1.4	-0.1921434010194	-0.0272020298055	-0.310003276	+0.185995810	$-4.9612743 \cdot 10^{-5}$
2.0	-0.213757395328	-0.0531442778343	-0.211804814	+0.117115821	$+1.3689163 \cdot 10^{-2}$
2.7	-0.288087420668	-0.0974570800382	-0.187498745	+0.063409104	$+1.9436509 \cdot 10^{-2}$
3.2	-0.36333863346	-0.136807508995	-0.200371498	+0.019329540	$+2.07951438 \cdot 10^{-2}$
3.8	-0.40563826903	-0.182849879952	-0.2377797699	-0.0366277154	$+1.46393183 \cdot 10^{-2}$
4.4	-0.369830983118	-0.216276864418	-0.2660192540	-0.0533511418	$+6.32160876 \cdot 10^{-3}$
4.8	-0.332980176923	-0.230071222613	-0.26963988881	-0.0442994637	$+3.10851465 \cdot 10^{-3}$
6.0	-0.268758564653	-0.246504028951	-0.257867067604	-0.012637379017	$+3.553678797 \cdot 10^{-4}$
12.0	-0.2500106833629	-0.2499987480	-0.250010225530	-0.000011494714	$+3.40744742 \cdot 10^{-7}$

was to minimize the error even at the expense of the length of analytic expressions (64) and (65). The quality of the obtained fits was characterized by means of the square root of the estimated variance $\left(10^{-12}<\sigma<10^{-8}\right)$ and the maximum distortion ($3 \cdot 10^{-12}<\varepsilon<10^{-8}$).

In order to estimate the error in the rovibrational energy due to the uncertainties in the individual points, for each potential we constructed a fit to the residuals. Such a fit was then added to or subtracted from the main potential and its effect on the rovibrational energy was obtained. On the basis of the above procedure, we estimate that the fitting procedure described above introduces approximately a hundred times greater error than the individual points of the potential, that means the error is about $10^{-7} \mathrm{~cm}^{-1}$.

D. Numerical solution of the radial Schrödinger equation

The analytic nonadiabatic correction potentials, together with the previously reported BO^{43} and adiabatic correction ${ }^{44}$ potentials, were employed to construct the total nonadi-
abatic potential $\mathcal{Z}(R)$ of Eq. (60). Eq. (59) was integrated numerically on a nonuniform grid ${ }^{46}$

$$
\begin{equation*}
r_{i}=r_{0}\left(e^{t_{i}}-1\right) \tag{66}
\end{equation*}
$$

where

$$
\begin{equation*}
t_{i}=(i-1) h, \quad i=1,2, \ldots, N \tag{67}
\end{equation*}
$$

The grid parameters $r_{0}=0.0001 \mathrm{bohr}, N=2400, r_{N}=40 \mathrm{bohr}$, and $h \approx 0.000537 \mathrm{bohr}$ were adjusted experimentally to permit at least $10^{-7} \mathrm{~cm}^{-1}$ accuracy of the eigenvalues.

To confirm these results we employed additionally the discrete variable representation (DVR) method. ${ }^{49}$ Prior to the construction of the DVR Hamiltonian on $(0, \infty)$ interval, we first transform Eq. (52), using notation of Sec. IV C, to a more convenient form

$$
\begin{equation*}
\left[-\frac{\partial}{\partial R}\left(\frac{1}{2 \mu_{\mathrm{a}}}+\mathcal{W}_{\|}^{\text {int }}(R)\right) \frac{\partial}{\partial R}+\frac{J(J+1)}{R^{2}}\left(\frac{1}{2 \mu_{\mathrm{a}}}+\mathcal{W}_{\perp}^{\text {int }}(R)\right)+\frac{\mathcal{W}_{\|}^{\text {int }}(R)}{R}+\mathcal{Y}(R)\right] \eta_{J}(R)=E \eta_{J}(R), \tag{68}
\end{equation*}
$$

where μ_{a} is a reduced mass of separated atoms. Next, for the grid of radial points $x_{i}=$ $a+i \frac{b-a}{N}, i=1, \ldots, N-1$, we introduce the following associated functions $\tau_{n}\left(x_{i}\right)=$ $\sqrt{\frac{2}{b-a}} \sin \left(\frac{n \pi i}{N}\right)$. Then, the diagonal and non-diagonal DVR Hamiltonian operators are, respectively,

$$
\begin{align*}
H_{j j} & =\frac{1}{2 \Delta x} \mathcal{W}_{\|}^{\text {int }}\left(x_{j}\right) \frac{1}{j} \\
& +\frac{1}{(\Delta x)^{2}}\left(\frac{1}{2 \mu_{\mathrm{a}}}+\mathcal{W}_{\|}^{\text {int }}\left(x_{j}\right)\right)\left[\frac{\pi^{2}}{3}-\frac{1}{2 j^{2}}\right] \tag{69}\\
& +\frac{J(J+1)}{x_{j}^{2}}\left(\frac{1}{2 \mu_{\mathrm{a}}}+\mathcal{W}_{\perp}^{\text {int }}\left(x_{j}\right)\right)+\mathcal{Y}\left(x_{j}\right) \\
H_{i j} & =(-1)^{i-j}\left\{\frac{1}{\Delta x} \mathcal{W}_{\|}^{\text {intt }}\left(x_{j}\right)\left[\frac{1}{i-j}+\frac{1}{i+j}\right]\right. \\
& \left.+\frac{2}{(\Delta x)^{2}}\left(\frac{1}{2 \mu_{\mathrm{a}}}+\mathcal{W}_{\|}^{\text {int }}\left(x_{j}\right)\right)\left[\frac{1}{(i-j)^{2}}-\frac{1}{(i+j)^{2}}\right]\right\} \tag{70}
\end{align*}
$$

with $\Delta x=\frac{b-a}{N}$.
Another potential source of error affecting the final results comes from the uncertainty in the nuclear mass. The currently most accurate value of the proton mass ${ }^{37} m_{\mathrm{p}} / m_{\mathrm{e}}=$ $1836.15267377(17)$ carries the uncertainty at eleventh significant figure. The nuclear masses
for D_{2} and T_{2} are less accurate and amount to $m_{\mathrm{d}} / m_{\mathrm{e}}=3670.4829652(15)$ and $m_{\mathrm{t}} / m_{\mathrm{e}}=$ $5496.9215267(50)$, respectively. To establish the influence of this uncertainty on the leading nonadiabatic correction to D_{0} of rovibrational levels, the mass parameter was changed by $\pm 1 \sigma$, while solving Eq. (59). The observed changes in energy levels were lower than $10^{-8} \mathrm{~cm}^{-1}$ for H_{2} and $<3 \cdot 10^{-8} \mathrm{~cm}^{-1}$ for D_{2} and T_{2}.

The main conclusion drawn from this analysis is that the final accuracy of the leading order nonadiabatic corrections is limited by the efficiency of the fitting procedure and equals to $10^{-7} \mathrm{~cm}^{-1}$. Certain room for further improvement still exists and would require using finer grid for single point calculations and refinement of the fitting functions.

In the best available in literature total energy of H_{2}, the overall error introduced by higher order nonadiabatic corrections, estimated in Ref. 32, and by relativistic and QED corrections (see Ref. 33) is of the order of $10^{-3} \mathrm{~cm}^{-1}$. The results reported in this work, accurate to $10^{-7} \mathrm{~cm}^{-1}$, enable removal of the uncertainties of the leading order nonadiabatic corrections along with the BO and adiabatic correction errors ${ }^{43,44}$ from the overall error budget.

E. Nonadiabatic corrections to rovibrational levels

Our final values of the leading order nonadiabatic corrections to the dissociation energy of the ground level of the symmetric isotopologues of hydrogen molecule are collected in Table IV. For H_{2} and D_{2} these values agree perfectly with previous estimations (0.4339(2) and $0.1563(2)$ of Ref. 33) but are three orders of magnitude more accurate. The third value, for T_{2}, also agrees with 0.0859 obtained by Wolniewicz ${ }^{24}$ albeit his value has no uncertainty assigned. Extensive tables with the leading order nonadiabatic correction to all rovibrational

TABLE IV. The leading order nonadiabatic corrections to the dissociation energy of the ground level of the symmetric isotopologues of hydrogen molecule. The Rydberg constant 2 Ry $=$ $219474.63137078(110) \mathrm{cm}^{-1}$ was used to convert D_{0} from atomic units to cm^{-1}.

Molecule	$\Delta D_{0} / \mathrm{cm}^{-1}$
H_{2}	$0.4339618(1)$
D_{2}	$0.1563160(3)$
T_{2}	$0.0859664(6)$

levels of $\mathrm{H}_{2}, \mathrm{D}_{2}$, and T_{2} are available in the Supplemental Material repository. ${ }^{48}$
In the perturbative approach to the nonrelativistic energy employed here, what remains to be established and possibly eliminated is the error originating from the neglect of the higher order terms in the electron-to-nucleus mass ratio. One could expect that in the sequence of $\mathrm{H}_{2}, \mathrm{D}_{2}$, and T_{2}, such terms would scale proportionally to the $m_{\mathrm{e}} / \mu_{\mathrm{n}}$ factor. In a very simplistic approach to this problem one could estimate these corrections for D_{0} of the ground level by multiplying the leading order value by this factor to obtain $5 \cdot 10^{-4} \mathrm{~cm}^{-1}, 8 \cdot 10^{-5} \mathrm{~cm}^{-1}$, and $3 \cdot 10^{-5} \mathrm{~cm}^{-1}$. Another manner of such estimation relies on subtraction of the total nonadiabatic energy obtained directly in variational calculations ${ }^{50-52}$ (displayed in Table V) from our perturbative nonadiabatic energy. Such an estimation leads to $6 \cdot 10^{-5} \mathrm{~cm}^{-1}$, $-3 \cdot 10^{-6} \mathrm{~cm}^{-1}$, and $1 \cdot 10^{-6} \mathrm{~cm}^{-1}$. Apparently this series lacks the proper dependence on nuclear mass as is not even monotonic. Perhaps the accuracy of the variational calculations is near the value of the evaluated effect, which prevents a reliable estimation.

VI. CONCLUSIONS

The theoretical total dissociation energy of a molecule can be considered using nonrelativistic QED (NRQED) in which D_{0} is composed of several contributions resulting from the expansion in powers of the fine-structure constant. NRQED enables approaching the total D_{0} by successively collecting smaller and smaller terms of its expansion. The ultimate error of the theoretical D_{0} has then two main sources: one is the cutoff of the perturbational series, and the other is the limited accuracy of determination of the leading terms. This observation sets the strategic directions for improvement in theoretical predictions. The present publication, along with the two preceding articles, ${ }^{43,44}$ aims at increasing the accuracy of the nonrelativistic contribution to D_{0}, which appears to be the largest of all the components. This goal has been reached thanks to the improved methodology connected with explicitly correlated exponential wave function. Further development of this method in relation to the relativistic effects is underway in our group. One should realize though that it is insufficient just to increase the accuracy of a particular term of the NRQED expansion. The main factor limiting the accuracy of the predictions are the missing small terms of higher order in α or m_{e} / M as well as the relativistic recoil terms. Determination of these contributions requires significant theoretical efforts, but once it is successfully performed, the negligible effects, like

TABLE V. Comparison of the leading order nonadiabatic dissociation energy obtained in the present calculations with literature results.

Reference	D_{0} / cm^{-1}
H_{2}	
This work, 2015	36118.797675
Bubin et al., 2009 ${ }^{50}$	36118.79774
Bubin, Adamowicz, 2003 ${ }^{53}$	36118.797552
ECG, 2009 ${ }^{32}$	36118.7978
Wolniewicz, 1995 ${ }^{24}$	36118.795
Bishop, Cheung, 1978 ${ }^{18}$	36118.60
D_{2}	
This work, 2015	36749.090978
Bubin et al., 2011 ${ }^{51}$	36749.090975
ECG, 2009 ${ }^{33}$	36749.0910
T_{2}	
This work, 2015	37029.224863
Stanke, Adamowicz, 201452	37029.224863
ECG, 2009	37029.2249

finite size of the nuclei ${ }^{38}$ or gerade-ungerade mixing, ${ }^{54}$ will enter then into play.

ACKNOWLEDGEMENT

This research was supported by NCN Grants No. 2012/04/A/ST2/00105 (K.P.) and 2014/13/B/ST4/04598 (J.K.), as well as by a computing grant from the Poznan Supercomputing and Networking Center, and by PL-Grid Infrastructure.

REFERENCES

${ }^{1}$ W. Heitler and F. London, Z. Phys. 44, 455 (1927).
${ }^{2}$ E. E. Witmer, Phys. Rev. 28, 1223 (1926).
${ }^{3}$ F. R. Bichowsky and L. C. Copeland, J. Am. Chem. Soc. 50, 1315 (1928).
${ }^{4}$ H. M. James and A. S. Coolidge, J. Chem. Phys. 1, 825 (1933).
${ }^{5}$ H. Beutler, B29, 315 (1935).
${ }^{6}$ O. W. Richardson, Proc. R. Soc. Lond. A 152, 503 (1935).
${ }^{7}$ G. Herzberg, Nature 163, 170 (1947).
${ }^{8}$ W. Kolos and C. C. J. Roothaan, Rev. Mod. Phys. 32, 219 (1960).
${ }^{9}$ G. Herzberg and A. Monfils, J. Mol. Spectrosc. 5, 482 (1961).
${ }^{10}$ W. Kołos and L. Wolniewicz, J. Chem. Phys. 41, 3663 (1964).
${ }^{11}$ W. Kołos and L. Wolniewicz, J. Chem. Phys. 41, 3674 (1964).
${ }^{12}$ W. Kołos and L. Wolniewicz, J. Chem. Phys. 43, 2429 (1965).
${ }^{13}$ L. Wolniewicz, J. Chem. Phys. 45, 515 (1966).
${ }^{14}$ W. Kołos and L. Wolniewicz, J. Chem. Phys. 49, 404 (1968).
${ }^{15}$ G. Herzberg, Phys. Rev. Lett. 23, 1081 (1969).
${ }^{16}$ W. C. Stwalley, Chem. Phys. Lett. 6, 241 (1970).
${ }^{17}$ W. Kołos and J. Rychlewski, Acta Phys. Polon. A 53, 281 (1978).
${ }^{18}$ D. Bishop and L. Cheung, Phys. Rev. A 18, 1846 (1978).
${ }^{19}$ W. Kołos, K. Szalewicz, and H. J. Monkhorst, J. Chem. Phys. 84, 3278 (1986).
${ }^{20}$ E. F. McCormack and E. E. Eyler, Phys. Rev. Lett. 66, 1042 (1991).
${ }^{21}$ A. Balakrishnan, V. Smith, and B. P. Stoicheff, Phys. Rev. Lett. 68, 2149 (1992).
${ }^{22}$ W. Kołos and J. Rychlewski, J. Chem. Phys. 98, 3960 (1993).
${ }^{23}$ L. Wolniewicz, J. Chem. Phys. 99, 1851 (1993).
${ }^{24}$ L. Wolniewicz, J. Chem. Phys. 103, 1792 (1995).
${ }^{25}$ B. P. Stoicheff, Can. J. Phys. 79, 165 (2001).
${ }^{26}$ Y. P. Zhang, C. H. Cheng, J. T. Kim, J. Stanojevic, and E. E. Eyler, Phys. Rev. Lett. 92, 203003 (2004).
${ }^{27}$ J. Liu, E. J. Salumbides, U. Hollenstein, J. C. J. Koelemeij, K. S. E. Eikema, W. Ubachs, and F. Merkt, J. Chem. Phys. 130, 174306 (2009).
${ }^{28}$ J. Liu, D. Sprecher, C. Jungen, W. Ubachs, and F. Merkt, J. Chem. Phys. 132, 154301 (2010).
${ }^{29}$ D. Sprecher, J. Liu, C. Jungen, W. Ubachs, and F. Merkt, J. Chem. Phys. 133, 111102 (2010).
${ }^{30}$ D. Sprecher, C. Jungen, W. Ubachs, and F. Merkt, Faraday Discuss. 150, 51 (2011).
${ }^{31}$ K. Pachucki and J. Komasa, J. Chem. Phys. 129, 034102 (2008).
${ }^{32}$ K. Pachucki and J. Komasa, J. Chem. Phys. 130, 164113 (2009).
${ }^{33}$ K. Piszczatowski, G. Lach, M. Przybytek, J. Komasa, K. Pachucki, and B. Jeziorski, J. Chem. Theory Comput. 5, 3039 (2009).
${ }^{34}$ K. Pachucki and J. Komasa, Phys. Chem. Chem. Phys. 12, 9188 (2010).
${ }^{35}$ J. Komasa, K. Piszczatowski, G. Łach, M. Przybytek, B. Jeziorski, and K. Pachucki, J. Chem. Theory Comput. 7, 3105 (2011).
${ }^{36}$ E. J. Salumbides, G. D. Dickenson, T. I. Ivanov, and W. Ubachs, Phys. Rev. Lett. 107, 043005 (2011).
${ }^{37}$ S. Sturm, F. Kohler, J. Zatorski, A. Wagner, Z. Harman, G. Werth, W. Quint, C. H. Keitel, and K. Blaum, Nature 506, 467 (2014).
${ }^{38}$ R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, L. M. P. Fernandes, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C.-Y. Kao, P. Knowles, E.-O. Le Bigot, Y.-W. Liu, J. A. M. Lopes, L. Ludhova, C. M. B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J. M. F. dos Santos, L. A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J. a. F. C. A. Veloso, and F. Kottmann, Nature 466, 213 (2010).
${ }^{39}$ W. E. Caswell and G. P. Lepage, Phys. Lett. B 167, 437 (1986).
${ }^{40}$ K. Pachucki, Phys. Rev. A 56, 297 (1997).
${ }^{41}$ K. Pachucki and J. Komasa, Phys. Rev. Lett. 92, 213001 (2004).
${ }^{42}$ K. Pachucki, Phys. Rev. A 80, 032520 (2009).
${ }^{43}$ K. Pachucki, Phys. Rev. A 82, 032509 (2010).
${ }^{44}$ K. Pachucki and J. Komasa, J. Chem. Phys. 141, 224103 (2014).
${ }^{45}$ L. Piela, in Ideas of Quantum Chemistry (Second Edition), edited by L. Piela (Elsevier, Oxford, 2014) pp. 577 - 662.
${ }^{46}$ W. R. Johnson, Atomic Structure Theory, Lectures on Atomic Physics (Springer-Verlag, Berlin and New York, 2007) p. 36.
${ }^{47}$ Y. Hida, X. S. Li, and D. H. Bailey, "Quad-double arithmetic: Algorithms, implementation, and application," Tech. Rep. (LBL-46996, Lawrence Berkeley National Laboratory, 2000).
${ }^{48}$ See supplemental material at [URL] for the full-length table with numerical values of the nonadiabatic potentials, Fortran'90 routines evaluating the potentials, and for extensive
tables of all bound nonadiabatic rovibrational states of $\mathrm{H}_{2}, \mathrm{D}_{2}$, and T_{2}.
${ }^{49}$ D. T. Colbert and W. H. Miller, J. Chem. Phys. 96, 1982 (1992).
${ }^{50}$ S. Bubin, F. Leonarski, M. Stanke, and L. Adamowicz, Chem. Phys. Lett. 477, 12 (2009).
${ }^{51}$ S. Bubin, M. Stanke, and L. Adamowicz, J. Chem. Phys. 135, 074110 (2011).
${ }^{52}$ M. Stanke and L. Adamowicz, J. Chem. Phys. 141, 154302 (2014).
${ }^{53}$ S. Bubin and L. Adamowicz, J. Chem. Phys. 118, 3079 (2003).
${ }^{54}$ K. Pachucki and J. Komasa, Phys. Rev. A 83, 042510 (2011).

[^0]: ${ }^{\text {a) }}$ Electronic mail: krp@fuw.edu.pl
 ${ }^{\text {b) }}$ Electronic mail: komasa@man.poznan.pl

