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We have performed accurate calculations of the hyperfine structure of the 2 3P state in the 9Be atom with
the help of highly optimized, explicitly correlated functions, accounting for the leading finite nuclear mass,
radiative, nuclear structure and relativistic effects. By comparison with measurements, we have determined the
9Be nuclear quadrupole moment to be QN = 0.05350(14) barns, which is not only the most accurate result,
but also disagrees with previous determinations.

The electric quadrupole moment QN of nuclei is a mea-
sure of the deformation of the nuclear charge distribution with
respect to the spherical symmetry. This deformation comes
from a strong dependence of nuclear forces on the orientation
of the nucleon spin and is present in atomic nuclei with a spin
equal to or greater than one, as it is for 9Be with I = 3/2. In
principle, QN could be determined from the nuclear structure
theory, but such calculations with controlled accuracy have
not yet been feasible. Only very recently and only for such a
simple nucleus as the deuteron, theoretical predictions based
on the chiral effective field theory have reached the uncer-
tainty of 1% [1], and this result agreed with the more precise
value from the rotational spectroscopy of the deuterium hy-
dride (HD) molecule [2].

Originally,QN for many nuclei was determined by the elec-
tron scattering of the nuclei, for example for 7Li [3]. However,
for 9Be the available experimental data are not only limited in
accuracy but also differ noticeably from each other, indicat-
ing that the scattering results are not always conclusive [4, 5].
Nowadays, reliable QN values can be derived from a combi-
nation of theoretical and atomic or molecular spectroscopic
data. This has been realized for LiH, LiF, and LiCl molecules
[6], leading to a QN(7Li) consistent with the nuclear scatter-
ing value [3]. Although appropriate theoretical calculations
were performed for BeH+ [7, 8] as well as for the 7,9Be−

anion [9] years ago, there have been no corresponding mea-
surements reported so far. Therefore, the method of choice
for finding QN(9Be) is atomic spectroscopy.

In the accurate determination of QN from atomic spec-
troscopy, it is important to understand the electron-nucleus
interaction at the fundamental level. Recent advances in mea-
surements of electronic [10] and muonic atoms [11], together
with progress in the theoretical description of atomic spectra
[12], indicate the importance of the nuclear structure effects.
Therefore, accurate knowledge of the nuclear quadrupole mo-
ment will give access to details of the electron-nucleus inter-
actions which, so far, have not been visible, like for example
the nuclear quadrupole polarizability [13].

The ground state 2 1S0 of Be is fully symmetric; thus, the
nuclear quadrupole moment does not lead here to any ob-
servable effect. In contrast, in the lowest excited 2 3P level,
which is metastable, the hyperfine interactions cause level

splitting, and this splitting can be accurately measured [14].
So, it is atomic structure theory that must interpret the hyper-
fine structure in terms of the magnetic dipole and the electric
quadrupole moments of the nucleus. Still, the same hyper-
fine interactions that lead to the hyperfine splitting also cause
the hyperfine mixing of different 2 3PJ levels. This mixing
had been accounted for in Ref. 14 but in a very simplified
way. Although the accuracy of these approximations has been
questioned [7], consecutive atomic structure calculations, us-
ing modern and sophisticated approaches, have relied on these
original inaccurate calculations of the hyperfine mixing. An
exception is the work by Beloy et al. [15], in which this mix-
ing was calculated in the second order of perturbation theory
using the relativistic CI+MBPT approach, but its numerical
precision turned out to be insufficient to obtain QN with a
competitive accuracy. This hyperfine mixing is not specific
just to Be atoms, it is certainly present in all the other atomic
systems. Therefore, the determinations of quadrupole mo-
ments for many other nuclei might have lower accuracy than
anticipated, what should be verified, as we have done here for
the 9Be nucleus.

In this work, we employ well-optimized explicitly cor-
related Gaussian wave functions to have good control over
the numerical accuracy. With these wave functions we per-
form calculations of the 9Be hyperfine structure, with a com-
plete treatment of the hyperfine mixing of different 2 3PJ

levels. Moreover, we fully account for the leading radia-
tive (QED), finite nuclear mass, and nuclear structure effects,
while dealing with relativistic and higher order corrections ap-
proximately. Our result for the electric quadrupole moment
QN(9Be) show that all of its previous determinations were not
as accurate as claimed, due to a very approximate treatment of
the hyperfine mixing and neglect of the radiative (QED) cor-
rections.

Fine and hyperfine structure Hamiltonian.—The most ac-
curate approach for light atomic systems solves at first the
nonrelativistic Hamiltonian
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and the hyperfine structure Hamiltonian
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where ~pN = −
∑

a ~pa is the nuclear momentum, ~I is the nu-
clear spin, g is the free-electron g-factor, QN is the electric
quadrupole moment of the nucleus, and gN is the nuclear g-
factor

gN =
mN

Z mp

µ

µN

1

I
. (11)

Leading QED effects are included in the free electron g-factor,
while higher order corrections are accounted for as described
later on.

Because the hyperfine splittings are only about 100 times
smaller than the fine splitting, one cannot assume that hyper-
fine levels have a definite angular momentum ~J = ~L + ~S,
but only definite ~L and ~S. It is convenient therefore to extend
the original formulation of the hyperfine splitting by Hibbert
in [16] and represent the fine and the hyperfine structure of
the 2 3P state in terms of an effective Hamiltonian, instead of
expectation values only

Heff = c1 ~L · ~S + c2 (LiLj)(2)(SiSj)(2)

+ a1
~I · ~S + a2

~I · ~L+ a3 (LiLj)(2)SiIj
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where the coefficients a1, a2, a3, b, c1, c2 are independent of
J , but are specific to the particular state. These coefficients
can be obtained, for example, from the matrix elements ofHfs

and Hhfs in the decoupled |ML,MS〉 or |J,MJ〉 basis. Once
these coefficients are known, the above Hamiltonian can be di-
agonalized yielding the hyperfine levels. Alternatively, the hy-
perfine structure can be represented in terms of J-dependent
AJ and BJ coefficients

Hhfs, eff = AJ
~I · ~J +

BJ

6

3 (Ii Ij)(2)

I(2 I − 1)

3 (J i Jj)(2)
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which are conventionally used to represent the measured val-
ues, while the fine structure is given in terms of differences in
the centroid energies.

If the atomic levels had a definite value J , the fine structure
would be given by the expectation value of Heff , namely

Efs(J) =

 c1 + c2/6 for J = 2
−c1 − 5 c2/6 for J = 1
−2 c1 + 5 c2/3 for J = 0

, (14)

and the hyperfine structure by

AJ =

{
a1/2 + a2/2 + a3/6 for J = 2
a1/2 + a2/2− 5 a3/6 for J = 1

,

BJ =

{
b for J = 2
−b/2 for J = 1

. (15)

Because, in general, one cannot assume that the levels have
a definite value of J , the effective hyperfine Hamiltonian in
Eq. (12) has to be diagonalized numerically. Nonetheless, the
hyperfine structure can still be represented in terms of AJ and
BJ coefficients, and we use them for comparison of theoreti-
cal predictions with experimental results and for the determi-
nation of the nuclear quadrupole moment QN.

Relativistic, radiative, and finite nuclear size corrections.—
The hyperfine Hamiltonian in Eq. (5) represents the leading

hyperfine interactions, but there are also many small correc-
tions which are often overlooked in literature. These correc-
tions contain terms with higher powers of the fine structure
constant α. Because most of them are proportional to the
Fermi contact interaction, i.e. to ~I · ~Q1 in Eq. (5), we account
for them in terms of the following factor

ã1 = a1(1 + ε). (16)

Below, we briefly describe contributions included in the ε
term.

TheO(α) correction is analogous to that in hydrogenic sys-
tems [17] and consists of two parts. The first part is due to the
nuclear recoil
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and numerically is very small, almost negligible. The recoil
contribution to ε amounts to εrec = −0.000 011. The second
part of theO(α) correction is due to the finite nuclear size and
the nuclear polarizability, and is given by [17, 18]
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where rZ is a kind of effective nuclear radius called the
Zemach radius. Disregarding the inelastic effects, this radius
can be written down in terms of the electric charge ρE and
magnetic-moment ρM densities as

rZ =

∫
d3r d3r′ ρE(r) ρM (r′) |~r − ~r′|. (19)

Nevertheless, the inelastic, i.e. polarizability, corrections can
be significant, but because they are very difficult to calculate,
they are usually neglected. In this work we account for pos-
sible inelastic effects by employing rZ from a comparison of
very accurate calculations of hfs in 9Be+ with the experimen-
tal value, namely rZ = 4.07(5) fm [18]. Because this correc-
tion is also proportional to the contact Fermi interaction, we
represent it in terms of εfs = −0.000 615.

Next, there are radiative and relativistic corrections of the
relative order O(α2). The radiative correction, beyond that
included by the free electron g-factor, is [17]
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and the corresponding ε factor is εrad = −0.000 384. The
O(α2) relativistic and higher order corrections are much more
complicated. They have been calculated for the ground state
of 9Be+ [18]. Here we take this result and assume that it
is proportional to the Fermi contact interaction, and obtain
εrel = 0.001 664. This is the only approximation we assume
in this work, and as a consequence we neglect the mixing of
the 2 3P1 state with the nearby lying 2 1P1. Exactly for this
reason we will use only the hyperfine splitting of the 2 3P2

state, which does not mix with 2 1P1 for the determination of
QN. The resulting total correction is

ε = εrec + εfs + εrad + εrel = 0.654 · 10−3. (21)

Some previous works present these multiplicative correction
for all individual hyperfine contributions, but in our opinion
this cannot be fully correct because higher order relativistic
corrections may include additional terms, beyond that in Heff

in Eq. (12). These corrections are expected to be much smaller
than the experimental uncertainty for the BJ coefficient, and
therefore are neglected.

ECG wave function and expectation values.—Let us now
move to the calculations of the ai, b, and ci coefficients. To
obtain sufficiently high accuracy for these parameters, we ex-
press the four-electron atomic wave function as a linear com-
bination of properly symmetrized explicitly correlated Gaus-
sian (ECG) functions,

Ψ ({~ra}) =

K∑
n=1

tnA
[
φn ({~ra}) χ{a}

]
, (22)

where tn are linear coefficients, A is the antisymmetrization
operator over electronic indices, and {a} and {~ra} denote
the sequence of electron indices and coordinates, respectively.

The electronic P symmetry of the states was enforced using
the following spatial functions
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with wb and ucd being nonlinear variational parameters, while
the spin functions corresponding to different spin S = 1 pro-
jections were, for {a} = (1, 2, 3, 4):

χ1−1
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χ11
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2
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where αi and βi are the one-electron spin-up and spin-down
functions. To control the uncertainty of our results we per-
formed the calculations with several basis sets successively in-
creasing their size. The nonlinear parameters were optimized
variationally with respect to the nonrelativistic energy E un-
til the energy reached stability in a desired number of digits.
From the analysis of convergence we obtained the extrapo-
lated nonrelativistic energies and mean values used in Table I.
The largest wave functions optimized variationally were com-
posed of 6144 terms, leading to the nonrelativistic energy in
agreement with the result obtained by Kedziorski et al. [19].

The optimized nonrelativistic wave functions were sub-
sequently employed to evaluate the fine and hyperfine pa-
rameters from the expectation values of the corresponding
quantum-mechanical operators (2)-(10). For this purpose we
chose J = 2, L = 1, and for an arbitrary M

c1 = 〈J,M |Q1|J,M〉, (27)
c2 = 6 〈J,M |Q2|J,M〉, (28)

a1 = 〈J,M | ~Q1 · ~J |J,M〉/3, (29)

a2 = 〈J,M | ~Q2 · ~J |J,M〉/3, (30)

a3 = 〈J,M | ~Q3 · ~J |J,M〉, (31)

b = 〈L,M |Qij Li Lj |L,M〉/5. (32)

The numerical values of these parameters and their conver-
gence with increasing size of the ECG basis are shown in Ta-
ble I. Their relative accuracy can be estimated collectively as
better than 6 · 10−6.

Fine and hyperfine structure.—The hyperfine transition fre-
quencies νJ(F ;F+1) can be expressed in terms of theAJ and
BJ parameters and vice versa. For this, one writes

〈Hhfs,eff〉F = AJ AIJF +BJ BIJF + CJ CIJF (33)

where

AIJF =
1

2
K (34)

BIJF =
3/4K(K + 1)− I(I + 1)J(J + 1)

2I(2I − 1)J(2J − 1)
(35)
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TABLE I. Convergence of the nonrelativistic energy and theoretical fine and hyperfine structure parameters for the 2 3P state of 9Be (in MHz).
Mass mN = 9.012 183 07(8) u [20] and magnetic moment µ/µN = −1.177 432(3) [21] were used for the 9Be nucleus.

K E/a.u. c1 c2 a1 a2 a3 b/QN (MHz/barn)

1536 −14.566 340 608 5 32 986.385 5 399.032 −231.116 70 −22.698 781 14.788 494 27.150 476
2048 −14.566 341 144 7 32 987.849 5 399.186 −231.126 66 −22.698 923 14.788 389 27.149 896
3072 −14.566 341 380 0 32 989.401 5 399.240 −231.130 99 −22.698 986 14.788 467 27.149 112
4096 −14.566 341 441 5 32 989.854 5 399.190 −231.129 61 −22.699 124 14.788 579 27.148 954
6144 −14.566 341 466 0 32 990.027 5 399.172 −231.128 99 −22.699 186 14.788 630 27.148 898
∞ −14.566 341 474(8) 32 990.2(2) 5 399.15(2) −231.128 4(6) −22.699 24(5) 14.788 68(5) 27.148 87(3)

with K = F (F + 1) − I(I + 1) − J(J + 1) and the total
angular momentum ~F = ~S+ ~L+ ~I . The octupole term CIJF

is given e.g. by Schwartz [22] and Jaccarino [23].
For J = 1 we arrive at
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and for J = 2
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(40)

The above listed parameters (36)-(40) were evaluated us-

TABLE II. AJ , BJ , and CJ parameters determined using Eqs. (36)-
(40) from experimental [14] and theoretical hfs frequencies νJ (in
MHz). The theoretical B2 is by definition equal to the experimental
one, which serves for determination of b in Eq. (41).

Experimental Theoretical Difference
A1 −140.1564(8) −140.1091 −0.0473(8)
B1 −3.2363(7) −3.2337 −0.0026(7)

A2 −124.6165(5) −124.6073 −0.0092(5)
B2 0.7800(21) 0.7800 0.0
C2 −0.00030(9) −0.00032 0.00002(9)

ing both experimental and theoretical transition frequencies
νJ(F ;F + 1), and their numerical values are presented in Ta-
ble II. The experimental values of νJ (in MHz) were taken
from Ref. 14, assuming their uncertainties are statistical and
uncorrelated. The resulting experimental values for A1 and
B1 are the same as in Ref. 14, while for A2 and B2 are twice
more accurate due to inclusion of the C2 coefficient. On the
other hand, theoretical values were found by diagonalization
of the effective Hamiltonian of Eq. (12). Most importantly,

the parameter b was fixed by matching theoretical and experi-
mental B2, which holds for

b = 1.4525(40) MHz, (41)

where the uncertainty originates from that of the experimental
one in B2.

The differences between experimental and theoretical val-
ues, shown in Tab. II, are not discrepancies but result from
neglected higher order relativistic and QED effects, which
are beyond those proportional to the Fermi contact interac-
tion. For the A2 coefficient these effects are of relative order
0.07 · 10−3, while for A1 they are 0.33 · 10−3. They are larger
for A1 due to hyperfine mixing of 2 3P1 with the nearby 2 1P1

state, which we have not taken into account in our calcula-
tion. Moreover, the relative difference for the B1 coefficient
is δB1/B1 = 0.80 · 10−3, which most probably is also due to
this mixing. For this reason, we have chosen B2 and not B1

for the determination of the b coefficient.
The centroids of the calculated hyperfine energy levels are

shown in Tab. III in the column ‘fs levels’ for all J values of
the 2 3P state. This table contains also experimental [14] and
calculated fine-structure transition frequencies as well as their
difference. This difference is much larger than the estimate

TABLE III. Theoretical fine structure (fs) energy levels of the 2 3P
state of 9Be, and the comparison of experimental [14] and theoretical
fs transition frequencies (in GHz).

J fs levels νexp(J ; J + 1) νthe(J ; J + 1) Diff.
2 33.890
1 −37.489 71.86(24) 71.379 0.48(24)
0 −56.987 19.41(19) 19.498 −0.09(19)

of relativistic corrections, which is O((Z α)2). Therefore,
we presume, that these differences are due to inaccurate ex-
perimental results, because these fine splittings have not been
directly measured but determined from the magnetic field de-
pendence of the hfs splittings [14].

Determination of QN (9Be).—Having calculated the value
of b/QN = 27.148 87(3) MHz/barn, see Tab. I, and fixed b
by matching theoretical and experimental values of B2, we
obtain the electric nuclear quadrupole moment QN of 9Be

QN = 0.053 50(14) barn . (42)
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The uncertainty in QN comes from the experimental error in
the ν2 hyperfine frequencies. In this context, the uncertainties
from the neglected higher order relativistic and QED effects
in the b parameter, as well as the numerical uncertainties, are
much smaller and are not shown.

Among the literature results listed in Tab. IV and depicted
in Fig. 1, only the QN reported by Beloy et al. [15], thanks
to its large uncertainty, agrees with our quadrupole moment.
The lack of agreement with the other previous studies indi-
cates that it is very difficult to estimate theoretical uncertain-
ties using well-established, atomic structure methods such as
MCHF or CI+MBPT.

TABLE IV. Comparison of the electric quadrupole moment (in barns)
of the 9Be nucleus obtained using atomic structure calculations.

Source QN(
9Be)

Blachman and Lurio, 1967 [14] 0.049(3)
Ray et al. , 1973 [24] 0.052 5(3)
Sinanoǧlu and Beck, 1973 [25] 0.054 94
Beck and Nicolaides, 1984 [26] 0.055 45
Sundholm and Olsen, 1991 [27] 0.052 88(38)
Jönsson and Fisher, 1993 [28] 0.052 56
Nemouchi et al., 2003 [9] 0.052 77
Beloy et al. , 2008 [15] 0.053(3)
This work 0.053 50(14)

Conclusions.—We have determined the electric quadrupole
moment QN(9Be) with significantly higher accuracy and
in disagreement with previous values. The improvement
achieved in this work has several independent sources. The
first one is the recalculation of the A2, B2, and C2 coeffi-
cients from experimental hyperfine splitting. More precisely,
including C2 in the effective Hamiltonian Hhfs,eff in Eq. (13)
enabled us to decrease the experimental uncertainties by a fac-
tor of 2. The second improvement is due to the inclusion of
the hyperfine mixing by exact diagonalization of the effective
fine- and hyperfine-structure Hamiltonian of Eq. (12). The

0.045 0.050 0.055 0.060
QBe(barn)

Blachman and Lurio, 1967

Ray et al., 1973

Sinanoglu and Beck, 1973

Beck and Nicolaides, 1984

Sundholm and Olsen, 1991

Jonsson and Fisher, 1993

Nemouchi et al., 2003

Beloy et al., 2008

This work

FIG. 1. Comparison of the electric quadrupole moment (in barns) of
the 9Be nucleus obtained using atomic structure calculations.

third improvement comes from the very accurate calculation
of the expectation values of the fine- and hyperfine-structure
operators using explicitly correlated functions allowing for the
complete electron correlations. The fourth one is due to the
exact inclusion of the finite nuclear mass in the fine and hy-
perfine interaction in Eqs. (2) and (5). Finally, the fifth source
of improvement is due to accounting for the relativistic, radia-
tive and nuclear structure corrections by appropriate rescaling
of the a1 parameter.

Regarding our theoretical uncertainties, they come exclu-
sively from neglected higher order relativistic and QED con-
tributions, in particular those due to hyperfine mixing of the
2 3P1 and 2 1P1 states. The calculation of the complete O(α2)
correction is possible but technically difficult. It has been per-
formed for Be+ in [29] due to the availability of the expo-
nentially correlated basis functions there. Nevertheless, if a
complete O(α2) correction is known, one can use both B1

and B2 parameters to obtain an even more accurate nuclear
quadrupole moment of 9Be.
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[25] O. Sinanoǧlu and D. R. Beck, HFS constants of Be I 1s22s2p
3P0, B I 1s22s2p2 4P and B I 1s22s2p2 2D obtained from the
non-closed shell many-electron theory for excited states, Chem.
Phys. Lett. 20, 221 (1973).

[26] D. R. Beck and C. A. Nicolaides, Fine and hyperfine structure of
the two lowest bound states of Be− and their first two ionization
thresholds, Int. J. Quantum Chem. 26, 467 (1984).

[27] D. Sundholm and J. Olsen, Large MCHF calculations on the
hyperfine structure of Be(3Po): the nuclear quadrupole moment
of 9Be, Chem. Phys. Lett. 177, 91 (1991).

[28] P. Jönsson and C. F. Fischer, Large-scale multiconfiguration
Hartree-Fock calculations of hyperfine-interaction constants for
low-lying states in beryllium, boron, and carbon, Phys. Rev. A
48, 4113 (1993).

[29] M. Puchalski and K. Pachucki, Ground-state hyperfine splitting
in the Be+ ion, Phys. Rev. A 89, 032510 (2014).


