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Trautman–Bondi mass and angular momentum
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Abstract. The energy and angular momentum at null infinity are presented with the help of
a simple example of a massless scalar field in Minkowski spacetime. It turns out that the case
of the massless scalar field in Minkowski spacetime already exhibits all the essential features
of the problem at hand, while avoiding various technicalities which arise when one wishes to
describe Einstein gravity. In General Relativity we present a new variational formulation on
hypersurfaces which are space-like inside and light-like near future null infinity. The formulae,
we obtain, correspond to the mass loss formula.
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1 Scalar field on a hyperboloid

Starting from the Lagrangian density L := − 1
2

√
−det ηµνη

µν∂νφ∂µφ for a scalar field
φ in a flat Minkowski space M with the metric ηµνdxµdxν = ρ−2

(
dθ2 + sin2 θdϕ2 +

2dsdρ√
1+ρ2

+ dρ2

1+ρ2 − ρ2ds2
)

one can consider (see [5]) the variational formula on a hyper-

boloid Σ :=
{
x ∈M | x0 := s = const.

}
:

−δH =
∫

Σ

(
π̇δψ − ψ̇δπ

)
+

∫
∂Σ

sin θψ̇δψ (1)

where H :=
∫
Σ
H, the density of the Hamiltonian in terms of conformally rescaled

phase variables (π, ψ) takes the form

H(π, ψ) :=
Ω2

2ρ2
sin θ

[(
ρψ,ρ

)2 +
(πρ2

√
1 + ρ2

Ω2 sin θ
+ ψ,ρ

)2 +
◦
γABψ,Aψ,B −

Ω2

6ρ2
R(g)ψ2

]

and
◦
γABdxAdxB = dθ2 + sin2 θdϕ2, (A = θ, ϕ), ψ := Ω−1φa.

Let M denote the standard conformal completion at future null infinity I + of M ,
let Στ be the closureb of Στ in M , set Sτ := S(τ, ρ = 0) = ∂Στ = Στ ∩ I +. The

aΩ is a conformal factor such that ρ−1Ω = O(1) and ψ = O(1) = ∂ρψ.
bΣτ is a hyperboloid at “retarded time” s = τ .
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reader not familiar with the notion of Scri can simply think of the Sτ ’s as “spheres at
infinity” on the hypersurfaces Στ . (I + =

{
x ∈M | ρ = 0

}
.)

Variational formula (1) describes an opened Hamiltonian system because we are
not allowed to kill the boundary term and our Hamiltonian H is not conserved in
time −∂0H =

∫
Sτ

sin θ(ψ̇)2. Similarily, for the angular momentum along z-axis (which
is related to the vector field XJ = ∂ϕ) we obtain non-conservation law −∂0Jz =∫

Sτ0
sin θψ̇ψ,ϕ where Jz :=

∫
Σ
πψ,ϕ.

For τ > τ0 let N[τ0,τ ] := ∪u∈[τ0,τ ]Su, so N[τ0,τ ] be a null hypersurface contained in
I + with boundary Sτ ∪Sτ0 . An attempt to treat separately the hyperboloid and Scri
leads to various difficulties in the Hamiltonian approach. However, the ADM energy
assigned to the hyperboloid Στ plus N]−∞,τ ] – a piece of Scri between hyperboloid and
spatial infinity (cf. [3]), enables one to remove an infinite tail N]−∞,τ0] and apply the
remaining Trautman-Bondi energy as a Hamiltonian. More precisely, we can consider
a Hamiltonian system on a surface Στ ∪ N[τ,τ0] and according to [5] we have the
following variational formula

−δmTB =
∫

Στ∪N[τ,τ0]

(
π̇δψ − ψ̇δπ

)
+

∫
Sτ0

πδψ (2)

where mTB :=
∫
Στ∪N[τ,τ0]

H =
∫
Στ0

H is the Trautman-Bondi energy at retarded time

τ0, the density of the Hamiltonian on N is defined by H := πψ,u and π|N = sin θψ̇.
Killing the term at Sτ0 in (2) by an appropriate choice of boundary conditions, our
system (2) becomes Hamiltonian as a usual infinite dimensional dynamical system.
This can be achieved, assuming for example that δψ|Sτ0

= 0, which simply means that
ψ is fixed at the time τ0. The precise meaning of those heuristic considerations will
be given in [6].

2 General Relativity

The curved space-time M equipped with a pseudoriemannian metric of the form

gµνdxµdxν = −V
r

e2βdu2 − 2e2βdudr + r2γAB(dxA − UAdu)(dxB − UBdu) (3)

enables one to consider the initial value problem on a light-like hypersurface C :={
x ∈M | x0 = u = const. , r ≥ r0

}
with the boundary ∂C = S(u, r = r0) ∪ S(u, r =

∞), where S(u, r = r0) := {x ∈ M | x0 = u = const. , r = r0} and S(u, r = ∞) =
Su ⊂ I + is a sphere at the future null infinity. We also assume that

√
det γAB =

sin θ. It has been shown in [5] how to compose generating formulae on a space-
like and null hypersurfaces along two-dimensional boundary, where they meet. More
precisely, let O be a space-like hypersurface with ∂O = S(u, r0), so O ∪ C gives a
typical example of such composition. Let P kl denote ADM momentum on O and
ΠAB := − 1

2 sin θ∂r(rγAB − r
◦
γ AB) be its equivalent on C. The conformally rescaled

field ψAB := rγAB − r
◦
γAB on C is a counterpart of riemannian metricc gkl on O.

cThis way the phase space on a surface O ∪ C consists of
[
(Pkl, gkl); (ΠAB , ψ

AB)
]
.
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In the case of Einstein gravity the variation of the Hilbert Lagrangian L = 1
16π

√
|g| R

(see [2] and [5]) leads to the following formula analogous to (2):

16πδmTB =
∫

O

ġklδP
kl− Ṗ klδgkl +

∫
C

ψ̇ABδΠAB−Π̇ABδψ
AB +

1
2

∫
Su

sin θψ̇ABδψ
AB(4)

where the integral at null infinity mTB := 1
8π

∫
Su
r − V = 1

4π

∫
Su
M sin θ defines the

energy in the radiating regime (V = r − 2M +O(r−1))d.
Equation (4) is the variational formula on a truncated cone O∪C, which is space-

like inside and light-like near Scri. One can also take a space-like hyperboloidal hy-
persurface Σu, which approaches I + in an appropriate way by moving the sphere
S(u, r0) = O ∩ C to the null infinity along cone C (O ⊂ Σu). The above observa-
tions confirm the fact that Trautman-Bondi mass is not sensitive on the particular
choice of the internal shape of the hypersurface but depends only on its boundary,
which is a section of I +. Similarly as for the energy of the scalar field, one can
denote the non-conservation law for the gravitational mass as follows 16π∂0mTB =
1
2

∫
Su

sin θψ̇ABψ̇
AB

(
= − 1

2

∫
Su

sin θ
◦
χAB,u

◦
χAB

,u

)
where the last form in the brack-

ets becomes clear when we apply the asymptotics presented in [3]. In particular,

ψAB |I + =
◦
χ AB and ψAB |I + = −

◦
χ AB . This formula expresses the main result

of the classical paper [1] and is valid in this form for much wider asymptotics than
considered in the original papers. For angular momentum we obtaine

16π∂0Jz =
1
2

∫
Su

sin θψ̇AB∂ϕψ
AB

where now

Jz :=
∫

O

P kl∂ϕgkl +
∫

C

ΠAB∂ϕψ
AB .

On the other hand one can easily check (see [3] p.715) that Jz is given as a boundary
integral for the superpotential proposed by Komar.
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dThe asymptotic behaviour of the full metric gµν in the form (3) is given in [3] and [4].
eThe non-conservation laws for the energy and angular momentum can be derived from variational

formula (4) simply by putting δ = ∂0 and δ = ∂ϕ respectively.


